Excessive occupational exposure to Manganese (Mn) has been associated with clinical symptoms resembling idiopathic Parkinson's disease (IPD), impairing cognitive and motor functions. Several studies point towards an involvement of the brain neurotransmitter system in Mn intoxication, which is hypothesized to be disturbed prior to onset of symptoms. Edited Magnetic Resonance Spectroscopy (MRS) offers the unique possibility to measure γ-amminobutyric acid (GABA) and other neurometabolites in vivo non-invasively in workers exposed to Mn. In addition, the property of Mn as Magnetic Resonance Imaging (MRI) contrast agent may be used to study Mn deposition in the human brain. In this study, using MRI, MRS, personal air sampling at the working place, work history questionnaires, and neurological assessment (UPDRS-III), the effects of chronic Mn exposure on the thalamic GABAergic system was studied in a group of welders (N=39) with exposure to Mn fumes in a typical occupational setting. Two subgroups of welders with different exposure levels (Low: N=26; mean air Mn=0.13±0.1mg/m; High: N=13; mean air Mn=0.23±0.18mg/m), as well as unexposed control workers (N=22, mean air Mn=0.002±0.001mg/m) were recruited. The group of welders with higher exposure showed a significant increase of thalamic GABA levels by 45% (p<0.01, F(1,33)=9.55), as well as significantly worse performance in general motor function (p<0.01, F(1,33)=11.35). However, welders with lower exposure did not differ from the controls in GABA levels or motor performance. Further, in welders the thalamic GABA levels were best predicted by past-12-months exposure levels and were influenced by the Mn deposition in the substantia nigra and globus pallidus. Importantly, both thalamic GABA levels and motor function displayed a non-linear pattern of response to Mn exposure, suggesting a threshold effect.
The usage of smartphones instead of simple mobile phones increases sharply in our era, especially among young people, because they do multiple tasks with single equipment. This study mainly focuses on smartphone satisfaction by combining hand measurements, smartphone users’ survey results, and hand dexterity levels of corresponding users acquired from Minnesota Manual Dexterity Test (MMDT). Structural Equation Modelling (SEM) is used as a statistical tool to discover the potential direct and indirect relations among user satisfaction, hand dimensions, and dexterity scores. Results indicates that thumb length, hand length, and dexterity level of the users have notable effects on users’ satisfaction with smartphones. Based on the results, a new approach that includes both gross motor skills and physical measurements is suggested to see hidden indirect relations with satisfaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.