Emergence of bovine mastitis caused by Prototheca algae is the impetus to better understand these infections. Both P. bovis and P. ciferrii belong to Prototheca algae, but they differ in their pathogenicity to induce inflammatory responses. The objective was to characterize and compare pathogenesis of inflammatory responses in bMECs induced by P. bovis versus P. ciferrii. Mitochondrial ultrastructure, activity and mtROS in bMECs were assessed with transmission electron microscopy and laser scanning confocal microscopy. Cytokines, including TNF-α, IL-1β and IL-18, were measured by ELISA and real-time PCR, whereas expressions of various proteins in the NF-κB and NLRP3 inflammasome pathways were detected with immunofluorescence or Western blot. Infection with P. bovis or P. ciferrii damaged mitochondria, including dissolution and vacuolation of cristae, and decreased mitochondrial activity, with P. bovis being more pathogenic and causing greater destruction. There were increases in NADPH production and mtROS accumulation in infected bMECs, with P. bovis causing greater increases and also inducing higher cytokine concentrations. Expressions of NF-κB-p65, p-NF-κB-p65, IκBα and p-IκBα proteins in the NF-κB pathway, as well as NLRP3, Pro Caspase1, Caspase1 p20, ASC, Pro IL-1β, and IL-1β proteins in the NLRP3 inflammasome pathway, were significantly higher in P. bovis-infected bMECs. However, mito-TEMPO significantly inhibited production of cytokines and decreased expression of proteins in NF-κB and NLRP3 inflammasome pathways in bMECs infected with either P. bovis or P. ciferrii. In conclusion, P. bovis or P. ciferrii infections induced inflammatory responses in bMECs, with increased mtROS in damaged mitochondria and activated NF-κB and NLRP3 inflammasome pathways, with P. bovis causing a more severe reaction.
Wild soybean, the progenitor and close relative of cultivated soybean, has an excellent environmental adaptation ability and abundant resistance genes. Expansins, as a class of cell wall relaxation proteins, have important functions in regulating plant growth and stress resistance. In the present study, we identified a total of 75 members of the expansin family on the basis of recent genomic data published for wild soybean. The predicted results of promoter elements structure showed that wild soybean expansin may be associated with plant hormones, stress responses, and growth. Basal transcriptome data of vegetative organs suggest that the transcription of expansin members has some organ specificity. Meanwhile, the transcripts of some members had strong responses to salt, low temperature and drought stress. We screened and obtained an expansin gene, GsEXPB1, which is transcribed specifically in roots and actively responds to salt stress. The results of A. tumefaciens transient transfection showed that this protein was localized in the cell wall of onion epidermal cells. We initially analyzed the function of GsEXPB1 by a soybean hairy root transformation assay and found that overexpression of GsEXPB1 significantly increased the number of hairy roots, root length, root weight, and the tolerance to salt stress. This research provides a foundation for subsequent studies of expansins in wild soybean.
The NPR1 (nonexpressor of pathogenesis-related genes 1) gene is an activator of the systemic acquisition of resistance (SAR) in plants and is one of the central factors in their response to pathogenic bacterial infestation, playing an important role in plant disease resistance. Potato (Solanum tuberosum) is a crucial non-grain crop that has been extensively studied. However, the identification and analysis of the NPR1-like gene within potato have not been understood well. In this study, a total of six NPR1-like proteins were identified in potato, and phylogenetic analysis showed that the six NPR1-like proteins in Solanum tuberosum could be divided into three major groups with NPR1-related proteins from Arabidopsis thaliana and other plants. Analysis of the exon–intron patterns and protein domains of the six NPR1-like genes from potato showed that the exon–intron patterns and protein domains of the NPR1-like genes belonging to the same Arabidopsis thaliana subfamily were similar. By performing quantitative real-time PCR (qRT-PCR) analysis, we found that six NPR1-like proteins have different expression patterns in different potato tissues. In addition, the expression of three StNPR1 genes was significantly downregulated after being infected by Ralstonia solanacearum (RS), while the difference in the expression of StNPR2/3 was insignificant. We also established potato StNPR1 overexpression lines that showed a significantly increased resistance to R. solanacearum and elevated activities of chitinase, β-1,3-glucanase, and phenylalanine deaminase. Increased peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities, as well as decreased hydrogen peroxide, regulated the dynamic balance of reactive oxygen species (ROS) in the StNPR1 overexpression lines. The transgenic plants activated the expression of the genes associated with the Salicylic acid (SA) defense response but suppressed the expression of the genes associated with Jasmonic acid (JA) signaling. This resulted in resistance to Ralstonia solanacearum.
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is one of the most prevalent pathogens causing bovine mastitis worldwide. However, there is a lack of comprehensive information regarding genetic diversity, complete profiles of virulence factors (VFs), and antimicrobial resistance (AMR) genes for SDSD associated with bovine mastitis in China. In this study, a total of 674 milk samples, including samples from 509 clinical and 165 subclinical mastitis cases, were collected from 17 herds in 7 provinces in China from November 2016 to June 2019. All SDSD isolates were included in phylogenetic analysis based on 16S rRNA and multi-locus sequence typing (MLST). In addition, whole genome sequencing was performed on 12 representative SDSD isolates to screen for VFs and AMR genes and to define pan-, core and accessory genomes. The prevalence of SDSD from mastitis milk samples was 7.57% (51/674). According to phylogenetic analysis based on 16S rRNA, 51 SDSD isolates were divided into 4 clusters, whereas based on MLST, 51 SDSD isolates were identified as 11 sequence types, including 6 registered STs and 5 novel STs (ST521, ST523, ST526, ST527, ST529) that belonged to 2 distinct clonal complexes (CCs) and 4 singletons. Based on WGS information, 108 VFs genes in 12 isolates were determined in 11 categories. In addition, 23 AMR genes were identified in 11 categories. Pan-, core and accessory genomes were composed of 2,663, 1,633 and 699 genes, respectively. These results provided a comprehensive profiles of SDSD virulence and resistance genes as well as phylogenetic relationships among mastitis associated SDSD in North China.
Phytophthora infestans poses a serious threat to potato production, storage, and processing. Understanding plant immunity triggered by fungal elicitors is important for the effective control of plant diseases. However, the role of the potato stress response to Fusarium toxin deoxynivalenol (DON)-induced stress is still not fully understood. In this study, the metabolites of DON-treated potato tubers were studied for four time intervals using UPLC-MS/MS. We identified 676 metabolites, and differential accumulation metabolite analysis showed that alkaloids, phenolic acids, and flavonoids were the major differential metabolites that directly determined defense response. Transcriptome data showed that differentially expressed genes (DEGs) were significantly enriched in phenylpropane and flavonoid metabolic pathways. Weighted gene co-expression network analysis (WGCNA) identified many hub genes, some of which modulate plant immune responses. This study is important for understanding the metabolic changes, transcriptional regulation, and physiological responses of active and signaling substances during DON induction, and it will help to design defense strategies against Phytophthora infestans in potato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.