1. Glucuronidation via UDP-glucuronosyltransferase (UGT) in the intestine has been reported to influence the pharmacokinetics (PK) of drugs; however, information concerning the differences in activity between species is limited. Here, we investigated the in vitro and in vivo activities of intestinal glucuronidation for 17 UGT substrates in humans, rats, dogs and monkeys. 2. Although in vitro intrinsic clearance (CLint,u,UGT) in intestinal microsomes showed a good correlation between humans and laboratory animals, values tended to be lower in humans than in laboratory animals. The ratio of CLint,u,UGT in the absence and presence of bovine serum albumin differed between species. In vivo, the fraction of drug absorbed (FaFg) in humans correlated with that in dogs and monkeys, but not in rats. 3. While an inverse correlation between CLint,u,UGT and FaFg was observed in each species, the CLint,u,UGT values in the intestinal microsomes corresponding to FaFg values in dogs were three to four times higher than in other animals. 4. These results indicate the need for a degree of caution when extrapolating PK data from laboratory animals to humans.
UDP-glucuronosyltransferase (UGT) is highly expressed in the small intestine and catalyzes the glucuronidation of small molecules, which may affect the oral bioavailability of drugs. However, no method of predicting the in vivo observed fraction of absorbed drug (F(a)F(g)) affected by UGT has yet been established. Here, we investigated the relationship between F(a)F(g) and in vitro clearance of nine UGT substrates (ketoprofen, tolcapone, telmisartan, raloxifene, entacapone, resveratrol, buprenorphine, quercetin, and ezetimibe) via UGT in intestinal microsomes (CL(int, UGT)) in rats. F(a)F(g) was calculated from pharmacokinetic parameters after intravenous and oral administration or using the portal-systemic concentration difference method, with values ranging from 0.027 (ezetimibe) to 1 (tolcapone). Glucuronides of model compounds were observed in the portal plasma after oral administration, with CL(int, UGT) values ranging from 57.8 (tolcapone) to 19,200 µL/min/mg (resveratrol). An inverse correlation between F(a)F(g) and CL(int, UGT) was observed for most compounds and was described using a simplified intestinal availability model reported previously. This model gave accurate predictions of F(a)F(g) values for three in-house compounds. Our results show that F(a)F(g) in rats is affected by UGT and can be predicted using CL(int, UGT). This work should hasten the development of a method to predict F(a)F(g) in humans.
A method for quantitatively predicting the hepatic clearance of drugs by UDP-glucuronosyltransferases (UGTs) from in vitro data has not yet been established. We examined the relationship between in vitro and in vivo intrinsic clearance by rat hepatic UGTs using 10 drugs. For these 10 drugs, the in vitro intrinsic clearance by UGTs (CL(int, in vitro)) measured using alamethicin-activated rat liver microsomes was in the range 0.10-4500 ml/min/kg. Microsomal binding (f(u, mic)) was determined to be in the range 0.29-0.95 and the unbound intrinsic clearance (CL(uint, in vitro)) to be in the range 0.11-9600 ml/min/kg. The contribution of rat hepatic glucuronidation to drug elimination was 12.0%-76.6% and in vivo intrinsic clearance by UGTs was 5.7-9000 ml/min/kg. To evaluate the discrepancy between the in vitro and in vivo values, a scaling factor was calculated (CL(int, in vivo)/CL(int, in vitro)); the values were found to be in the range 0.89-110. The average fold error of the scaling factor values incorporating f(u, mic) was closer to unity than that without f(u, mic). The scaling factor values incorporating f(u, mic) were <10 in 8/10 drugs and <2 in 6/10 drugs, indicating a small discrepancy between in vitro and in vivo values. Thus, using alamethicin-activated liver microsomes, incorporating f(u, mic) into CL(int, in vitro), and considering the contribution of glucuronidation may enable us to quantitatively predict in vivo hepatic glucuronidation from in vitro data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.