The AML1-CBF transcription factor complex is essential for the definitive hematopoiesis of all lineages and is the most frequent target of chromosomal rearrangements in human leukemia. In the t(8;21) translocation associated with acute myeloid leukemia (AML), the AML1(CBFA2/PEBP2␣B) gene is juxtaposed to the MTG8(ETO/CDR) gene. We show here that the resultant AML1-MTG8 gene product specifically and strongly interacts with an 85-kDa phosphoprotein. Molecular cloning of cDNA indicated that the AML1-MTG8-binding protein (MTGR1) is highly related to MTG8 and similar to Drosophila Nervy. Comparison of amino acid sequences among MTGR1, MTG8, and Nervy revealed four evolutionarily conserved regions (NHR1 to NHR4). Ectopic expression of AML1-MTG8 in L-G murine myeloid progenitor cells inhibits differentiation to mature neutrophils and induces cell proliferation in response to granulocyte colony-stimulating factor (G-CSF). Analysis with C-terminal deletion mutants of AML1-MTG8 indicated that the region of 51 residues (488 to 538), which contains NHR2, is essential for the induction of G-CSF-dependent cell proliferation. Immunoprecipitation analysis indicates that this region is required for AML1-MTG8 to form a stable complex with MTGR1. Overexpression of MTGR1 stimulates AML1-MTG8 to induce G-CSF-dependent proliferation of L-G cells and to interfere with AML1-dependent transcription. These results suggest that AML1-MTG8 could function as a complex with MTGR1 and that the complex might be important in promoting leukemogenesis.Chromosome translocations associated with human leukemia frequently involve genes that code for a variety of transcriptional factors implicated in the regulation of normal hematopoiesis (44). The AML1-CBF transcription factor complex is the most frequent target of these translocations. The AML1 gene (on chromosome 21) was identified through its involvement in t(8;21) translocation, which occurs in ϳ40% of cases of acute myeloid leukemia with the M2 French-American-British subtype (28). In this translocation, the AML1 gene is juxtaposed to the gene which encodes a zinc finger-containing protein MTG8 (also known as ETO and CDR), resulting in the expression of the AML1-MTG8 chimeric protein (4,19,29,32). In addition, the AML1 gene is fused with the TEL gene, which encodes a member of the Ets family of transcription factors, to form a TEL-AML1 chimeric product by t(12;21) translocation. The resultant chimeric transcripts are detected in pediatric B-cell progenitor acute lymphoblastic leukemia, the most common leukemia seen in children (10, 46). Furthermore, AML1-containing fusion products are formed by t(3;21) translocation, which occurs in myelodysplastic syndrome and the blast crisis phase of chronic myelogenous leukemia (27,35,36). Moreover, CBF, which forms a heterodimer with AML1, is also the target of leukemia-associated chromosomal rearrangement and makes a fusion protein with smooth muscle myosin heavy chain (MYH11) in inv(16), which is often observed in AML-M4Eo (22).The AML1 family of transc...
By prophage transformation and subcloning, we have obtained Bacillus subtilis DNA fragments that could complement the hypersensitivity of ada (adaptive response deficient) mutants to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The nucleotide sequence contained two open reading frames that were assigned to the genes adaA and adaB, encoding methylphosphotriester-DNA methyltransferase and O6-methylguanine-DNA methyltransferase, respectively. These two genes overlap by 11 bp and comprise a small operon. The 1.6 Kb transcripts derived from the operon were detected in ada+ cells cultured in the presence of MNNG but not in control ada+ cells. From analysis of the syntheses of DNA alkyltransferases in the ada mutant cells harboring the plasmid carrying the complete or partial fragment, we conclude that the adaA gene product functions as a transcriptional activator of the ada operon, while the adaB gene product specializes in repair of mutagenic O6-methylguanine residues. Comparison with Escherichia coli ada operon showed that the two genes correspond to portions of the E. coli ada gene, implicating gene fusion or splitting as the origin of the difference in the organizations of the genes.
The biologically effective dose of solar UV radiation was estimated from the inactivation of UV-sensitive Bacillus subtilis spores. Two types of independent measurements were carried out concurrently at the Aerological Observatory in Tsukuba: one was the direct measurement of colony-forming survival that provided the inactivation dose per minute (ID/min) and the other was the measurement of the spectral irradiance by a Brewer spectrophotometer. To obtain the effective spectrum, the irradiance for each 1 nm wavelenght interval from 290 to 400 nm was multiplied with the efficiency for inactivation derived from the inactivation action spectrum of identically prepared spore samples. Integration of the effective spectrum provided the estimate for ID/min. The observed values of ID/min were closely concordant with the calculated values for the data obtained in four afternoons in 1993. The average ratio (+/- SD) between them was 1.24 (+/- 0.16) for 14 data points showing high inactivation rates (> 0.05 ID/min). Considering difficulties in the absolute dosimetry of UV radiation, the concordance was satisfactory and improved credibility of the two types of monitoring systems of biologically effective dose of solar UV radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.