Abstract. Changes in China's temperature and precipitation extremes have been studied by using observational data after 1950. The results reveal that mean minimum temperature has increased significantly in China during the past 40 years, especially in the winter in northern China. Meanwhile, nation-wide cold wave activity has weakened and the frequency of cold days in northern China has been reduced significantly. Mean maximum temperatures display no statistically significant trend for China as a whole. However, decreasing summer mean maximum temperatures are obvious in eastern China, where the number of hot days has been reduced. Seasonal I-day extreme maximum temperatures mainly reflect decreasing trends, while seasonal I-day extreme minimum temperatures are increasing.A statistically significant reduction of much above normal rain days in China has been detected. Contrarily, an increasing trend was detected in much above normal of precipitation intensity (precipitation/number of precipitation days) during the past 45 years.
In this study, synoptic situations associated with extreme hourly precipitation over China are investigated using rain gauge data, weather maps, and composite radar reflectivity data. Seasonal variations of hourly precipitation (>0.1 mm h−1) suggest complicated regional features in the occurrence frequency and intensity of rainfall. The 99.9th percentile is thus used as the threshold to define the extreme hourly rainfall for each station. The extreme rainfall is the most intense over the south coastal areas and the North China Plain. About 77% of the extreme rainfall records occur in summer with a peak in July (30.4%) during 1981–2013. Nearly 5800 extreme hourly rainfall records in 2011–15 are classified into four types according to the synoptic situations under which they occur: the tropical cyclone (TC), surface front, vortex/shear line, and weak-synoptic forcing. They contribute 8.0%, 13.9%, 39.1%, and 39.0%, respectively, to the total occurrence and present distinctive characteristics in regional distribution and seasonal or diurnal variations. The TC type occurs most frequently along the coasts and decreases progressively toward inland China; the frontal type is distributed relatively evenly east of 104°E; the vortex/shear line type shows a prominent center over the Sichuan basin with two high-frequency bands extending from the center southeastward and northeastward, respectively; and the weak-synoptic type occurs more frequently in southeast, southwest, and northern China, and in the easternmost area of northeast China. Occurrences of the weak-synoptic type have comparable contributions from mesoscale convective systems and smaller-scale storms with notable differences in their preferred locations.
[1] The Tropical Cyclone (TC) Precipitation (TCP) is partitioned from the station observations in China using the Objective Synoptic Analysis Technique (OSAT). The TCP spatial distribution, its ratio to total annual rainfall, the changes in the TCP volume, and the annual frequency of the torrential TCP events during the period 1957$2004 are examined with a focus on their long-term trends in this study. Tropical cyclones significantly contribute to the annual rainfall in southern, southeastern, and eastern China, including Taiwan and Hainan islands. The TCP in most of the southeastern coastal regions can be more than 500 mm a year, accounting for 20$40% of the total annual precipitation. Together with interdecadal and interannual variations, significant downward trends are found in the TCP volume, the annual frequency of torrential TCP events, and the contribution of TCP to the annual precipitation over the past 48 years. The downward trends were accompanied with the decreases in the numbers of TCs and typhoons that affected China during the period 1957 -2004. These changes strongly suggest that China has experienced decreasing TC influence over the past 48 years, especially in terms of the TCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.