To characterize the nature of bonding we derive the topological properties of the electron charge density of a variety of bonds based on ab initio valence bond methods. The electron density and its associated Laplacian are partitioned into covalent, ionic, and resonance components in the valence bond spirit. The analysis provides a density-based signature of bonding types and reveals, along with the classical covalent and ionic bonds, the existence of two-electron bonds in which most of the bonding arises from the covalent-ionic resonance energy, so-called charge-shift bonds. As expected, the covalent component of the Laplacian at the bond critical point is found to be largely negative for classical covalent bonds. In contrast, for charge-shift bonds, the covalent part of the Laplacian is small or positive, in agreement with the weakly attractive or repulsive character of the covalent interaction in these bonds. On the other hand, the resonance component of the Laplacian is always negative or nearly zero, and it increases in absolute value with the charge-shift character of the bond, in agreement with the decrease of kinetic energy associated with covalent-ionic mixing. A new interpretation of the topology of the total density at the bond critical point is proposed to characterize covalent, ionic, and charge-shift bonding from the density point of view.
The recently developed (L. Song, W. Wu, Q. Zhang, S. Shaik, J. Phys. Chem. A 2004, 108, 6017-6024) valence bond method coupled to a polarized continuum model (VBPCM) is applied to the Menshutkin reaction, NH3+CH3Cl-->CH3NH3(+)+Cl-, in the gas phase and in aqueous solution. The computed barriers and reaction energies at the level of the breathing orbital VB method (P. C. Hiberty, J. P. Flament, E. Noizet, Chem. Phys. Lett. 1992, 189, 259), BOVB and VBPCM//BOVB, are comparable to CCSD(T) and CCSD(T)//PCM results and to experimental values in solution. The gas-phase reaction is endothermic and leads to an ion-pair complex via a late transition state. By contrast, the reaction in the aqueous phase is exothermic and leads to separate solvated ions as reaction products, via an early transition state. The VB calculations provide also the reactivity parameters needed to apply the valence bond state correlation diagram method, VBSCD (S. Shaik, A. Shurki, Angew. Chem. Int. Ed. 1999, 38, 586). It is shown that the reactivity parameters along with their semiempirical derivations provide together a satisfactory qualitative and quantitative account of the barriers.
Xiamen valence bond (XMVB), which is an ab initio nonorthogonal valence bond program, has been progressively developed and refined during the last 25 years. As the release of XMVB 1.0 in 2004, a number of significant enhancements and improvements have been made to the program. As a consequence, a new version, XMVB 2.0, has been released and will be described in this article. In XMVB 2.0, the nonorthogonal orbital‐based reduced density matrix approach for the valence bond (VB) theory is implemented, based on the second quantization scheme for nonorthogonal orbitals. The present article also describes the recently developed algorithms for orbital optimization in the VB self‐consist field (VBSCF) method, in which the internal contraction of wave function is used for computing energy gradients. Moreover, several newly implemented ab initio VB methods, such as VBSCF(CAS), internally contracted VB second‐order perturbation theory (icVBPT2), VB polarizable continuum model, VB effective fragment potential (VBECP), and density‐functional‐based VB, are briefly reviewed in this article. Finally, test calculations of several planar arenes, in which up to 18 active electrons are involved, are performed with XMVB 2.0. © 2014 Wiley Periodicals, Inc.
A new ab initio valence bond method with density-functional-based correlation correction, so-called DFVB, is presented. In the DFVB method, the dynamic correlation energy is taken into account by use of density correlation functional(s), while the static correlation energy is covered by the VBSCF wave function. Owing to incorporation of DFT methods, DFVB provides an economic route to improving the accuracy of ab initio VB theory. Various tests of the method are presented, including the spectroscopic parameters of a series of diatomic molecules, the dipole moments of the NF molecule for different electronic states, and the singlet-triplet gaps of the diradical species, chemical reactions barriers, and total charge-shift resonance energies. These tests show that DFVB is capable of providing high accuracy with relatively low computational cost by comparison to the currently existing post-VBSCF methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.