Electrophysiology is the method of choice to characterize membrane channels. In this paper, we demonstrate a patch pipette based simple miniaturization that allows performing conductance measurements on a planar lipid bilayer in a microfluidic channel. Membrane proteins were reconstituted into Giant Unilamellar Vesicles (GUVs) by electroswelling, and GUVs with a single channel insertion were patched at the tip of pipette. We applied this approach to investigate the interactions of porins from E.coli with single antibiotics, and this will potentially provide information on the permeability rates. The results of this paper suggest that this approach can be extended to the integration of several pipettes into the microfluidic channel from different positions, allowing the multiplexed recordings and also reducing the substrate consumption below volumes.
An appropriate method to study the function of membrane channels is to insert them into free-standing lipid bilayers and to record the ion conductance across the membrane. The insulating property of a free-standing lipid bilayer versus the single-channel conductivity provides sufficient sensitivity to detect minor changes in the pathway of ions along the channel. A potential application is to use membrane channels as label-free sensors for molecules, with DNA sequencing as its most prominent application. However, the inherent instability of free-standing bilayers limits broader use as a biosensor. Here we report on a possible stabilization of free-standing lipid bilayers using polydopamine deposition from dopamine-containing solutions in the presence of an oxidant. This stabilization treatment can be initiated after protein reconstitution and is compatible with most reconstitution protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.