Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin's lymphoma in the adult population, and treatment of DLBCL is still unfavorable. Therefore, there is an urgent requirement to investigate the molecular mechanisms underlying DLBCL tumorigenesis. To study the potential function of microRNA-155 (miR-155) involved in the regulation of lymphoma, we monitored lymphoma cell behavior including proliferation, cell cycle, and apoptosis using CCK-8 and flow cytometry analysis. Real-time PCR was used to detect the expression levels of miR-155 in 118 lymphoma patients' tissues, and Western blot was also used to analyze the expression level of proteins correlated with cell cycle and apoptosis in lymphoma cells. miR-155 expression levels were higher in lymphoma tissues compared with adjacent tissues. Downregulation of miR-155 inhibited lymphoma cell progress by arresting cell cycle in the G0/G1 phase and promoting apoptosis. Cell cycle-correlated proteins (cyclin B1, cyclin D1, and CDK4) were inhibited by downregulation of miR-155. Apoptosis-correlated proteins level (Bax/Bcl-2 and caspase 3 activity) were increased by downregulation of miR-155. In addition, a significant inverse correlation between the level of miR-155 and transforming growth factor-β receptor 2 (TGFBR2) was observed, which has been demonstrated to be a novel tumor suppressor gene. A further in vivo tumor formation study in nude mice indicated that downregulation of miR-155 in lymphoma cells delayed the progress of tumor formation. These findings indicate that miR-155 may serve as a useful potential target for the treatment of lymphoma.
Osteosarcoma, is a kind of malignant tumor derived from malignant interstitial cells. The pathogenesis of osteosarcoma remains unclear and despite use of chemotherapy drugs, resistance to these drugs affects the success of treatment. The present study was conducted to investigate the effects of icariin (ICA) on osteosarcoma cell proliferation and to investigate the role of the Wnt/β-catenin signaling pathway in the inhibition process of ICA on osteosarcoma cell proliferation. Different concentrations of ICA were selected to treat the osteosarcoma cell line 143B for 24 h, and then the onset concentration of ICA when it inhibited the growth of osteosarcoma cancer cell line 143B was detected via an MTT assay. The effect of ICA on the apoptosis of colon cancer cell line 143B under this concentration was detected using a flow cytometer. RNA in osteosarcoma cell line 143B was extracted, followed by reverse transcription. The expression levels of related and apoptotic proteins in the Wnt/β-catenin signaling pathway using ICA were detected by semi-quantitative PCR and western blot analysis, respectively. The expression quantities of vascular endothelial growth factor (VEGF) and MMP-9 were detected by ELISA. MTT assay showed that ICA inhibited the growth of 143B when its concentration was 5 µM (p<0.01). Flow cytometry showed that the number of apoptotic cells after ICA treatment was significantly higher than that in control group (p<0.01). RNA in osteosarcoma cell line 143B was extracted, followed by reverse transcription. Semi-quantitative PCR and western blot analysis revealed that the expression levels of p-GSK3β, β-catenin, c-Myc and cyclin D1 in cells after ICA treatment were significantly downregulated (p<0.01), while the expression level of caspase-3 was significantly increased (p<0.01). ELISA showed that the expression quantities of VEGF and MMP-9 were significantly decreased (p<0.01). Thus, ICA can significantly inhibit osteosarcoma cell proliferation and promote osteosarcoma cell apoptosis, which may be realized by affecting the expression of the Wnt/β-catenin signaling pathway and blocking the expression of related proteins.
Liver cancer, also known as primary liver cancer, is cancer that starts in the liver. JNU-144, a new meroterpenoid purified from Lithospermum erythrorhizon, has exhibited promising anticancer activity; however, the molecular mechanisms of action of JNU-144 on malignant cells remain unclear. Our studies revealed that JNU-144 suppressed cell viability and proliferation in hepatoma cells by downregulating mTOR activation. Meanwhile, JNU-144 activated the intrinsic apoptosis pathway and subsequently triggered apoptotic cell death in SMMC-7721 cells. We also found that JNU-144 inhibited the epithelial–mesenchymal transition in both SMMC-7721 and HepG2 cells through reprogramming of epithelial–mesenchymal transition (EMT)-related gene expression or regulating protein instability. These findings indicate that JNU-144 exerts potent anticancer activity in hepatoma cells and may be developed as a potential therapeutic drug.
The effects of melatonin and calcium carbonate on aged rats with osteoporosis (OP) were assessed. Forty female Sprague-Dawley (SD) rats aged 15 months were randomly divided into a model group (group OP), melatonin group (group M), calcium carbonate group (group Ca) and melatonin combined with calcium carbonate group (group M+Ca), while 10 rats aged 3 months were set as the control group (group NC). The changes of bone density and bone mineral level of lumbar vertebra and bilateral femur in rats of each group were observed. The levels of serum calcium, phosphorus, superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) in rats of each group were determined. Compared with those in group NC, bone density of lumbar vertebra and bilateral femur and bone mineral level were distinctly reduced, serum calcium and activities of SOD and GSH-Px were obviously decreased, and MDA content was remarkably increased in rats of groups OP, M and Ca; the differences were statistically significant (P<0.05 or P<0.01); compared with that in group OP, bone density of lumbar vertebra and bilateral femur and bone mineral level were remarkably increased, serum calcium and activities of SOD and GSH-Px were obviously increased, and MDA content was remarkably decreased in rats of groups M, Ca and M+Ca; the differences were statistically significant (P<0.05 or P<0.01); compared with those in groups M and Ca, bone density of lumbar vertebra and bilateral femur and bone mineral level were obviously elevated, serum calcium and activities of SOD and GSH-Px were evidently elevated, and MDA content was remarkably decreased in rats of group M+Ca; the differences were statistically significant (P<0.05). Melatonin and calcium carbonate can significantly improve antioxidative ability in rats with osteoporosis, increase bone density, elevate serum calcium level and reduce bone mineral loss, thus preventing and treating osteoporosis, and the combination displays more remarkable effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.