BackgroundThe modification of microbial ecology in human gut by supplementing probiotics may be an alternative strategy to ameliorate or prevent depression.ObjectiveThe current study was conducted to assess the safety and efficacy of the probiotic strain Bacillus coagulans MTCC 5856 for major depressive disorder (MDD) in IBS patients.MethodPatients (n = 40) diagnosed for MDD with IBS were randomized (1:1) to receive placebo or B. coagulans MTCC 5856 at a daily dose of 2 × 109 cfu (2 billion spores) and were maintained to the end of double-blind treatment (90 days). Changes from baseline in clinical symptoms of MDD and IBS were evaluated through questionnaires.ResultsSignificant change (p = 0.01) in favour of the B. coagulans MTCC 5856 was observed for the primary efficacy measure Hamilton Rating Scale for Depression (HAM-D), Montgomery-Asberg Depression Rating Scale (MADRS), Center for Epidemiological Studies Depression Scale (CES-D) and Irritable bowel syndrome quality of life questionnaire (IBS-QOL). Secondary efficacy measures i.e. Clinical Global Impression-Improvement rating Scale (CGI-I), Clinical Global Impression Severity rating Scale (CGI-S), Gastrointestinal Discomfort Questionnaire (GI-DQ) and Modified Epworth Sleepiness Scale (mESS) also showed significant results (p = 0.01) in B. coagulans MTCC 5856 group compared to placebo group except dementia total reaction scoring. Serum myeloperoxidase, an inflammatory biomarker was also significantly reduced (p < 0.01) when compared with the baseline and end of the study. All the safety parameters remained well within the normal clinical range and had no clinically significant difference between the screening and at the end of the study.ConclusionB. coagulans MTCC 5856 showed robust efficacy for the treatment of patients experiencing IBS symptoms with major depressive disorder. The improvement in depression and IBS symptoms was statistically significant and clinically meaningful. These findings support B. coagulans MTCC 5856 as an important new treatment option for major depressive disorder in IBS patients.
Background Bacillus coagulans MTCC 5856 has been marketed as a dietary ingredient, but its efficacy in diarrhea predominant irritable bowel syndrome (IBS) condition has not been clinically elucidated till date. Thus, a double blind placebo controlled multi-centered trial was planned to evaluate the safety and efficacy of B. coagulans MTCC 5856 in diarrhea predominant IBS patients.MethodsThirty six newly diagnosed diarrhea predominant IBS patients were enrolled in three clinical centres. Along with standard care of treatment, 18 patients in group one received placebo while in group two 18 patients received B. coagulans MTCC 5856 tablet containing 2 × 109 cfu/day as active for 90 days. Clinical symptoms of IBS were considered as primary end point measures and were evaluated through questionnaires. The visual analog scale (VAS) was used for abdominal pain. Physician’s global assessment and IBS quality of life were considered as secondary efficacy measures and were monitored through questionnaires.ResultsLaboratory parameters, anthropometric and vital signs were within the normal clinical range during the 90 days of supplementation in placebo and B. coagulans MTCC 5856 group. There was a significant decrease in the clinical symptoms like bloating, vomiting, diarrhea, abdominal pain and stool frequency in a patient group receiving B. coagulans MTCC 5856 when compared to placebo group (p < 0.01). Similarly, disease severity also decreased and the quality of life increased in the patient group receiving B. coagulans MTCC 5856 when compared to placebo group.ConclusionsThe study concluded that the B. coagulans MTCC 5856 at a dose of 2 × 109 cfu/day along with standard care of treatment was found to be safe and effective in diarrhea predominant IBS patients for 90 days of supplementation. Hence, B. coagulans MTCC 5856 could be a potential agent in the management of diarrhea predominant IBS patients.
BackgroundBoswellic acids are pentacyclic triterpenes, which are produced in plants belonging to the genus Boswellia. Boswellic acids appear in the resin exudates of the plant and it makes up 25-35% of the resin. β-boswellic acid, 11-keto-β-boswellic acid and acetyl-11-keto-β-boswellic acid have been implicated in apoptosis of cancer cells, particularly that of brain tumors and cells affected by leukemia or colon cancer. These molecules are also associated with potent antimicrobial activities. The present study describes the antimicrobial activities of boswellic acid molecules against 112 pathogenic bacterial isolates including ATCC strains. Acetyl-11-keto-β-boswellic acid (AKBA), which exhibited the most potent antibacterial activity, was further evaluated in time kill studies, postantibiotic effect (PAE) and biofilm susceptibility assay. The mechanism of action of AKBA was investigated by propidium iodide uptake, leakage of 260 and 280 nm absorbing material assays.ResultsAKBA was found to be the most active compound showing an MIC range of 2-8 μg/ml against the entire gram positive bacterial pathogens tested. It exhibited concentration dependent killing of Staphylococcus aureus ATCC 29213 up to 8 × MIC and also demonstrated postantibiotic effect (PAE) of 4.8 h at 2 × MIC. Furthermore, AKBA inhibited the formation of biofilms generated by S. aureus and Staphylococcus epidermidis and also reduced the preformed biofilms by these bacteria. Increased uptake of propidium iodide and leakage of 260 and 280 nm absorbing material by AKBA treated cells of S aureus indicating that the antibacterial mode of action of AKBA probably occurred via disruption of microbial membrane structure.ConclusionsThis study supported the potential use of AKBA in treating S. aureus infections. AKBA can be further exploited to evolve potential lead compounds in the discovery of new anti-Gram-positive and anti-biofilm agents.
Hydroxychavicol isolated from the chloroform extraction of aqueous extract of Piper betle leaves showed inhibitory activity against oral cavity pathogens. It exhibited an inhibitory effect on all of the oral cavity pathogens tested (MICs of 62.5 to 500 g/ml) with a minimal bactericidal concentration that was twofold greater than the inhibitory concentration. Hydroxychavicol exhibited concentration-dependent killing of Streptococcus mutans ATCC 25175 up to 4؋ MIC and also prevented the formation of water-insoluble glucan. Interestingly, hydroxychavicol exhibited an extended postantibiotic effect of 6 to 7 h and prevented the emergence of mutants of S. mutans ATCC 25175 and Actinomyces viscosus ATCC 15987 at 2؋ MIC. Furthermore, it also inhibited the growth of biofilms generated by S. mutans and A. viscosus and reduced the preformed biofilms by these bacteria. Increased uptake of propidium iodide by hydroxychavicol-treated cells of S. mutans and A. viscosus indicated that hydroxychavicol probably works through the disruption of the permeability barrier of microbial membrane structures. Hydroxychavicol also exhibited potent antioxidant and anti-inflammatory activities. This was evident from its concentration-dependent inhibition of lipid peroxidation and significant suppression of tumor necrosis factor alpha expression in human neutrophils. Its efficacy against adherent cells of S. mutans in water-insoluble glucan in the presence of sucrose suggests that hydroxychavicol would be a useful compound for the development of antibacterial agents against oral pathogens and that it has great potential for use in mouthwash for preventing and treating oral infections.Diverse microorganisms inhabit the human oral cavity, and there is always a risk of infection with bacterial pathogens associated with the oral cavity. Streptococcus constitutes 60 to 90% of the remaining bacteria that colonize the teeth within the first 4 h after professional cleaning (17). Other early colonizers include Actinomyces spp., Eikenella spp., Haemophilus spp., Prevotella spp., Propionibacterium spp., and Veillonella spp. Many of the physical interactions that occur between the organisms of this community are known. Streptococcus is the only genus of oral cavity bacteria that demonstrates extensive and intergenic coaggregation (12, 13). The ability of this genus to bind to other early colonizers and to host oral matrices may confer an opportunity to viridians streptococci in establishing early dental plaque (17). Streptococcus mutans can colonize the tooth surface and initiate plaque formation by its ability to synthesize extracellular polysaccharides, mainly water-insoluble glucan from sucrose, using its glucosyltransferase (11).The current research targeting microbial biofilm inhibition has attracted a great deal of attention, and the search for effective antimicrobial agents against these oral pathogens could lead to identification of new agents for the prevention of dental caries and periodontal diseases arising out of dental plaque formation (23...
A newly identified class of compounds derived from a natural amide, piperine, is more potent than the parent molecule in potentiating the activity of ciprofloxacin through the inhibition of the NorA efflux pump. These molecules may prove useful in augmenting the antibacterial activities of fluoroquinolones in a clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.