Citrus family consists of a variety of eatable, consumable and usable items with varying nutritional contents. Naked eye citrus classification needs expert human effort, which provides poor decision reliability. The unreliable classification decision may be extremely hazardous when the citrus is being classified for exports or usage in pharmacy products and various food items. In this paper, citrus fruit has been classified on shape and texture features. Principal Component Analysis (PCA) was used as a methodology to explore statistical findings. The average accuracy of the system proposed is 84%. This system can be implemented on pharmacy stores, food production units, or industries, and citrus export centers for reliable citrus fruit classification.
Blind Source Extraction (BSE) may be an essential but a challenging task where multiple sources are convolved and/or time delayed. In this article we discuss the performance of Multivariate Calibration Techniques that comprise of Classical Least Square (CLS), Inverse Linear Regression (ILS), Principal Component Regression (PCR) and Partial Least Square Regression (PLS) in achieving this task in robust speech recognition systems with varying Signal-to-Noise Ratios (SNR). We specifically analyze two methods for identifying and removing outliers from the sample, namely; Outlier Sample Removal (OSR) and Descriptor Selection (DS) for Classical Least Square and Factor Based Regression respectively, which results in higher correlation among predicted and the expected results. Our experiments suggest that factor based methods produce much reliable results than Classical Least Square Regression. However, Classical Least Square is much more immune to white noise as compared to Factor Based Regressions. Our results prove that successful detection and removal of outliers from the Sample Under Test (SUT) may result in as low as 37% and 56% improvement in prediction with Classical Least Square and Principal Component Regression respectively.978-1-4244-4609-4/09/$25.00 ©2009 IEEE
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.