We propose objective and robust measures for the purpose of classification of “vaginal vs. cesarean section” delivery by investigating temporal dynamics and complex interactions between fetal heart rate (FHR) and maternal uterine contraction (UC) recordings from cardiotocographic (CTG) traces. Multivariate extension of empirical mode decomposition (EMD) yields intrinsic scales embedded in UC-FHR recordings while also retaining inter-channel (UC-FHR) coupling at multiple scales. The mode alignment property of EMD results in the matched signal decomposition, in terms of frequency content, which paves the way for the selection of robust and objective time-frequency features for the problem at hand. Specifically, instantaneous amplitude and instantaneous frequency of multivariate intrinsic mode functions are utilized to construct a class of features which capture nonlinear and nonstationary interactions from UC-FHR recordings. The proposed features are fed to a variety of modern machine learning classifiers (decision tree, support vector machine, AdaBoost) to delineate vaginal and cesarean dynamics. We evaluate the performance of different classifiers on a real world dataset by investigating the following classifying measures: sensitivity, specificity, area under the ROC curve (AUC) and mean squared error (MSE). It is observed that under the application of all proposed 40 features AdaBoost classifier provides the best accuracy of 91.8% sensitivity, 95.5% specificity, 98% AUC, and 5% MSE. To conclude, the utilization of all proposed time-frequency features as input to machine learning classifiers can benefit clinical obstetric practitioners through a robust and automatic approach for the classification of fetus dynamics.
Devising automated procedures for accurate vessel segmentation (retinal) is crucial for timely prognosis of vision-threatening eye diseases. In this paper, a novel supervised deep learning-based approach is proposed which extends a variant of the fully convolutional neural network. The existing fully convolutional neural network-based counterparts have associated critical drawbacks of involving a large number of tunable hyper-parameters and an increased end-toend training time furnished by their decoder structure. The proposed approach addresses these intricate challenges by using a skip-connections strategy by sharing indices obtained through maxpooling to the decoder from the encoder stage (respective stages) for enhancing the resolution of the feature map. This significantly reduces the number of required tunable hyper-parameters and the computational overhead of the training as well as testing stages. Furthermore, the proposed approach particularly helps in eradicating the requirement for employing both postprocessing and pre-processing steps. In the proposed approach, the retinal vessel segmentation problem is formulated as a semantic pixel-wise segmentation task which helps in spanning the gap between semantic segmentation and medical image segmentation. A prime contribution of the proposed approach is the introduction of external skip-connection for passing the preserved lowlevel semantic edge information in order to reliably detect tiny vessels in the retinal fundus images. The performance of the proposed scheme is analyzed based on the three publicly available notable fundus image datasets, while the widely recognized evaluation metrics of specificity, sensitivity, accuracy, and the Receiver Operating Characteristics curves are used. Based on the assessment of the images in {DRIVE, CHASE_DB1, and STARE} datasets, the proposed approach achieves a sensitivity, specificity, accuracy, and ROC performance of {0.
Vessel segmentation has come a long way in terms of matching the experts at detection accuracy, yet there is potential for further improvement. In this regard, the accurate detection of vessels is generally more challenging due to the high variations in vessel contrast, width, and the observed noise level. Most vessel segmentation strategies utilize contrast enhancement as a preprocessing step, which has an inherent tendency to aggravate the noise and therefore, impede accurate vessel detection. To alleviate this problem, we propose to use the state-of-the-art Probabilistic Patch-Based (PPB) denoiser within the framework of an unsupervised retinal vessel segmentation strategy based on the Frangi filter. The PPB denoiser helps preserve vascular structure while effectively dealing with the amplified noise. Also, the modified Frangi filter is evaluated separately for tiny and large vessels, followed by individual segmentation and linear recombination of the binarized outputs. This way, the performance of the modified Frangi filter is significantly enhanced. The performance evaluation of the proposed method is evaluated on two recognized open-access datasets, viz: DRIVE and STARE. The proposed strategy yields competitive results for both preprocessing modalities, i.e., Contrast Limited Adaptive Histogram Equalization (CLAHE) and Generalized Linear Model (GLM). The performance observed for CLAHE over DRIVE and STARE datasets is (Sn = 0.8027, Acc = 0.9561) and (Sn = 0.798, Acc = 0.9561), respectively. For GLM, it is observed to be (Sn = 0.7907, Acc = 0.9603) and (Sn = 0.7860, Acc = 0.9583) over DRIVE and STARE datasets, respectively. Furthermore, based on the conducted comparative study, it is established that the proposed method outperforms various notable vessel segmentation methods available in the existing literature. INDEX TERMS Image denoising, image segmentation, modified Frangi filter, probabilistic patch-based denoiser, retinal vessels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.