Vessel segmentation has come a long way in terms of matching the experts at detection accuracy, yet there is potential for further improvement. In this regard, the accurate detection of vessels is generally more challenging due to the high variations in vessel contrast, width, and the observed noise level. Most vessel segmentation strategies utilize contrast enhancement as a preprocessing step, which has an inherent tendency to aggravate the noise and therefore, impede accurate vessel detection. To alleviate this problem, we propose to use the state-of-the-art Probabilistic Patch-Based (PPB) denoiser within the framework of an unsupervised retinal vessel segmentation strategy based on the Frangi filter. The PPB denoiser helps preserve vascular structure while effectively dealing with the amplified noise. Also, the modified Frangi filter is evaluated separately for tiny and large vessels, followed by individual segmentation and linear recombination of the binarized outputs. This way, the performance of the modified Frangi filter is significantly enhanced. The performance evaluation of the proposed method is evaluated on two recognized open-access datasets, viz: DRIVE and STARE. The proposed strategy yields competitive results for both preprocessing modalities, i.e., Contrast Limited Adaptive Histogram Equalization (CLAHE) and Generalized Linear Model (GLM). The performance observed for CLAHE over DRIVE and STARE datasets is (Sn = 0.8027, Acc = 0.9561) and (Sn = 0.798, Acc = 0.9561), respectively. For GLM, it is observed to be (Sn = 0.7907, Acc = 0.9603) and (Sn = 0.7860, Acc = 0.9583) over DRIVE and STARE datasets, respectively. Furthermore, based on the conducted comparative study, it is established that the proposed method outperforms various notable vessel segmentation methods available in the existing literature. INDEX TERMS Image denoising, image segmentation, modified Frangi filter, probabilistic patch-based denoiser, retinal vessels.
Leukemia is the rapid production of abnormal white blood cells that consequently affects the blood and damages the bone marrow. The overproduction of abnormal and immature white blood cells leads to the damage of the immune system due to the reduced production of red blood cells and platelets by the bone marrow of the body. This hematological malignancy is generally diagnosed by manual methods such as complete blood count (CBC), bone marrow aspiration, or microscopic examination of the blood smear. Nevertheless, the manual methods of leukemia diagnosis are economical but are found to be less reliable, time-consuming, and hectic. Technological advancement in the medical field has effectively addressed these issues in the past. The problems in the manual diagnosis of leukemia detection have been overcome by the development of automated methods using the computer-aided diagnostic (CAD) systems for efficient and reliable leukemia diagnosis. Since the last decade, multiple approaches have been proposed for the CAD systems regarding pre-processing, segmentation, feature extraction, feature selection, and for the improvement of the classification accuracy of the CAD system for the leukemia detection. This paper presents a comprehensive review of the CAD systems for the detection of the various types of leukemia. The review presented here entails the details of various CAD systems for the automated diagnosis of various types of leukemia and analyses their methodologies in terms of their efficiency in pre-processing, segmentation, feature extraction and selection, and overall classification accuracy of the CAD system.INDEX TERMS Acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), computer-aided diagnostic (CAD), Leukemia.
Automated detection of vision threatening eye disease based on high resolution retinal fundus images requires accurate segmentation of the blood vessels. In this regard, detection and segmentation of finer vessels, which are obscured by a considerable degree of noise and poor illumination, is particularly challenging. These noises include (systematic) additive noise and multiplicative (speckle) noise, which arise due to various practical limitations of the fundus imaging systems. To address this inherent issue, we present an efficient unsupervised vessel segmentation strategy as a step towards accurate classification of eye diseases from the noisy fundus images. To that end, an ensemble block matching 3D (BM3D) speckle filter is proposed for removal of unwanted noise leading to improved detection. The BM3D-speckle filter, despite its ability to recover finer details (i.e., vessels in fundus images), yields a pattern of checkerboard artifacts in the aftermath of multiplicative (speckle) noise removal. These artifacts are generally ignored in the case of satellite images; however, in the case of fundus images, these artifacts have a degenerating effect on the segmentation or detection of fine vessels. To counter that, an ensemble of BM3D-speckle filter is proposed to suppress these artifacts while further sharpening the recovered vessels. This is subsequently used to devise an improved unsupervised segmentation strategy that can detect fine vessels even in the presence of dominant noise and yields an overall much improved accuracy. Testing was carried out on three publicly available databases namely Structured Analysis of the Retina (STARE), Digital Retinal Images for Vessel Extraction (DRIVE) and CHASE_DB1. We have achieved a sensitivity of 82.88, 81.41 and 82.03 on DRIVE, SATARE, and CHASE_DB1, respectively. The accuracy is also boosted to 95.41, 95.70 and 95.61 on DRIVE, SATARE, and CHASE_DB1, respectively. The performance of the proposed methods on images with pathologies was observed to be more convincing than the performance of similar state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.