Genetic and embryological studies in the mouse demonstrated functional differences between parental chromosomes during development. This is due to imprinted genes whose expression is dependent on their parental origin. In a recent systematic screen for imprinted genes, we detected Peg3 (paternally expressed gene 3). Peg3 is not expressed in parthenogenones. In interspecific hybrids, only the paternal copy of the gene is expressed in the embryos, individual tissues examined in d9.5-13.5 embryos, neonates and adults. Peg3 mRNA is a 9 kb transcript encoding an unusual zinc finger protein with eleven widely spaced C2H2 type motifs and two groups of amino acid repeats. Peg3 is expressed in early somites, branchial arches and other mesodermal tissues, as well as in the hypothalamus. Peg3 maps to the proximal region of chromosome 7. Consistent with our findings, maternal duplication of the proximal chromosome 7 causes neonatal lethality. This region is syntenic with human chromosome 19q13.1-13.3 (refs 10,11), where the genes for myotonic dystrophy and a putative tumour suppressor gene are located.
We have established a systematic screen for imprinted genes using a subtraction-hybridization method with day 8.5 fertilized and parthenogenetic embryos. Two novel imprinted genes, Peg1/Mest and Peg3, were identified previously by this method, along with the two known imprinted genes, Igf2 and Snrpn. Recently three additional candidate imprinted genes, Peg5-7 , were detected and Peg5 is analyzed further in this study. The cDNA sequence of Peg5 is identical to Neuronatin, a gene recently reported to be expressed mainly in the brain. Two novel spliced forms were detected with some additional sequence in the middle of the known Neuronatin sequences. All alternatively spliced forms of Peg5 were expressed only from the paternal allele, confirmed using DNA polymorphism in a subinterspecific cross. Peg5/Neuronatin maps to sub-distal Chr 2, proximal to the previously established imprinted region where imprinted genes cause abnormal shape and behavior in neonates.
A large imprinted gene cluster in human chromosome 11p15.5 has been implicated in Beckwith-Wiedemann syndrome and Wilms' tumor. We have identified a paternally expressed imprinted gene, PEG8/IGF2AS, in this locus. It is transcribed in the opposite direction to the IGF2 transcripts and some genomic regions are shared with the IGF2 gene, as in the case of the mouse imprinted Igf2as gene reported previously by T. Moore et al. As to the relationship between these genomic regions, the human and mouse genes are very similar but there is no homology in their middle parts. Interestingly, PEG8/IGF2AS and IGF2 were found to be overexpressed in Wilms' tumor samples, at levels over ten and a hundred times higher than that in normal kidney tissues neighboring the tumors, respectively. These findings indicate that PEG8/IGF2AS is a good marker of Wilms' tumor and also suggest the possibility of PEG8/IGF2AS being one of the candidate Wilms' tumor genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.