BackgroundThis study aimed to evaluate the population pharmacokinetics of digoxin in Japanese patients and establish a dosage regimen based on the pharmacokinetic data.MethodsWe analyzed 287 serum digoxin samples from 192 individuals by using the nonlinear mixed effects model. We used simulations to optimize the dosage regimen of digoxin to achieve a high likelihood of the target concentration (0.5–0.8 ng/mL).ResultsThe total body clearance (CL/F ([L/h]) was calculated using the following formula: CL/F = (1.21 + 0.0532 × CLcr [(mL/min]) × (1 + 0.787 × AMD), where CLcr is the creatinine clearance and AMD is 0 in the case of concomitant administration of amiodarone and 1 otherwise. To achieve the target concentration (0.5–0.8 ng/mL), the dosage of digoxin was 0.0625 mg/day (CLcr < 35 mL/min and AMD = 0); 0.125 mg/day (CLcr, 35–65 mL/min and AMD = 0); 0.1875 mg/day (CLcr, 65–100 mL/min and AMD = 0); 0.0625 mg/every other day (CLcr < 30 mL/min and AMD = 1); and 0.0625 mg/day (CLcr, 30–85 mL/min and AMD = 1).ConclusionsOur findings suggest that population parameters are useful for evaluating digoxin pharmacokinetics.
Background: This study aimed to evaluate the population pharmacokinetics of digoxin in Japanese patients and establish a dosage regimen based on the pharmacokinetic data. Methods: We analyzed 287 serum digoxin samples from 192 individuals by using the nonlinear mixed effects model. We used simulations to optimize the dosage regimen of digoxin to achieve a high likelihood of the target concentration (0.5-0.8 ng/mL). Results: The total body clearance (CL/F ([L/h]) was calculated using the following formula: CL/F = (1.21 + 0.0532 × CLcr [(mL/min]) × (1 + 0.787 × AMD), where CLcr is the creatinine clearance and AMD is 0 in the case of concomitant administration of amiodarone and 1 otherwise. To achieve the target concentration (0.5-0.8 ng/mL), the dosage of digoxin was 0.0625 mg/day (CLcr < 35 mL/min and AMD = 0); 0.125 mg/day (CLcr, 35-65 mL/min and AMD = 0); 0.1875 mg/day (CLcr, 65-100 mL/min and AMD = 0); 0.0625 mg/every other day (CLcr < 30 mL/min and AMD = 1); and 0.0625 mg/day (CLcr, 30-85 mL/min and AMD = 1). Conclusions: Our findings suggest that population parameters are useful for evaluating digoxin pharmacokinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.