Millettia japonica was recently reclassified into the genus Wisteria japonica based on chloroplast and nuclear DNA sequences. Because the seed of Wisteria floribunda expresses leguminous lectins with unique N-acetylgalactosamine-binding specificity, we purified lectin from Wisteria japonica seeds using ion exchange and gel filtration chromatography. Glycan microarray analysis demonstrated that unlike Wisteria floribunda and Wisteria brachybotrys lectins, which bind to both terminal N-acetylgalactosamine and galactose residues, Wisteria japonica lectin (WJA) specifically bound to both α- and β-linked terminal N-acetylgalactosamine, but not galactose residues on oligosaccharides and glycoproteins. Further, frontal affinity chromatography using more than 100 2-aminopyridine-labeled and p-nitrophenyl-derivatized oligosaccharides demonstrated that the ligands with the highest affinity for Wisteria japonica lectin were GalNAcβ1-3GlcNAc and GalNAcβ1-4GlcNAc, with K
a values of 9.5 × 104 and 1.4 × 105 M-1, respectively. In addition, when binding was assessed in a variety of cell lines, Wisteria japonica lectin bound specifically to EBC-1 and HEK293 cells while other Wisteria lectins bound equally to all of the cell lines tested. Wisteria japonica lectin binding to EBC-1 and HEK293 cells was dramatically decreased in the presence of N-acetylgalactosamine, but not galactose, mannose, or N-acetylglucosamine, and was completely abrogated by β-hexosaminidase-digestion of these cells. These results clearly demonstrate that Wisteria japonica lectin binds to terminal N-acetylgalactosamine but not galactose. In addition, histochemical analysis of human squamous cell carcinoma tissue sections demonstrated that Wisteria japonica lectin specifically bound to differentiated cancer tissues but not normal tissue. This novel binding characteristic of Wisteria japonica lectin has the potential to become a powerful tool for clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.