Metasurfaces have found broad applicability in free-space optics, while its potential to tailor guided waves remains barely explored. By synergizing the Jones matrix model with generalized Snell’s law under the phase-matching condition, we propose a universal design strategy for versatile on-chip mode-selective coupling with polarization sensitivity, multiple working wavelengths, and high efficiency concurrently. The coupling direction, operation frequency, and excited mode type can be designed at will for arbitrary incident polarizations, outperforming previous technology that only works for specific polarizations and lacks versatile mode controllability. Here, using silicon-nanoantenna-patterned silicon-nitride photonic waveguides, we numerically demonstrate a set of chip-scale optical couplers around 1.55 μm, including mode-selective directional couplers with high coupling efficiency over 57% and directivity about 23 dB. Polarization and wavelength demultiplexer scenarios are also proposed with 67% maximum efficiency and an extinction ratio of 20 dB. Moreover, a chip-integrated twisted light generator, coupling free-space linear polarization into an optical vortex carrying 1 ℏ orbital angular momentum (OAM), is also reported to validate the mode-control flexibility. This comprehensive method may motivate compact wavelength/polarization (de)multiplexers, multifunctional mode converters, on-chip OAM generators for photonic integrated circuits, and high-speed optical telecommunications.
Broadband light sources emitting in the terahertz spectral range are highly desired for applications such as noninvasive imaging and spectroscopy. Conventionally, THz pulses are generated by optical rectification in bulk nonlinear crystals with millimetre thickness, with the bandwidth limited by the phase-matching condition. Here we demonstrate broadband THz emission via surface optical rectification from a simple, commercially available 19 nm-thick indium tin oxide (ITO) thin film. We show an enhancement of the generated THz signal when the pump laser is tuned around the epsilon-near-zero (ENZ) region of ITO due to the pump laser field enhancement associated with the ENZ effect. The bandwidth of the THz signal generated from the ITO film can be over 3 THz, unrestricted by the phase-matching condition. This work offers a new possibility for broadband THz generation in a subwavelength thin film made of an ENZ material, with emerging physics not found in existing nonlinear crystals.
Graphene distinguishes itself as a promising candidate for realizing tunable integrated photonic devices with high flexibility. We propose a set of ultracompact tunable on-chip waveguide couplers with mode-selectivity and polarization sensitivity around the telecom wavelength of 1.55 μm, under the configuration of graphene-laminated silicon waveguides patterned with gold nanoantennas. Versatile couplings can be achieved in a widely tunable fashion within a deep-subwavelength area (210 × 210 nm2), by marrying the advantages of tight field confinement in plasmonic antennas and the largely tunable carrier density of graphene. Incident light signals can be selectively coupled into different fundamental modes with good mode quality and high directionality exceeding 25 dB. Design scenarios for asymmetric couplings are presented, where the operation wavelength can be tuned across a 107-nm range around 1.55 mm by altering the chemical potential of graphene from 0 to 1.8 eV. Furthermore, the proposed schemes can be leveraged as mode-sensitive on-chip directional waveguide signal detectors with an extinction ratio over 10 dB. Our results provide a new paradigm upon graphene-assisted tunable integrated photonic applications.
Orbital angular momentum (OAM) detection underpins almost all aspects of vortex beams’ advances such as communication and quantum analogy. Conventional schemes are frustrated by low speed, complicated system, limited detection range. Here, we devise an intelligent processor composed of photonic and electronic neurons for OAM spectrum measurement in a fast, accurate and direct manner. Specifically, optical layers extract invisible topological charge information from incoming light and a shallow electronic layer predicts the exact spectrum. The integration of optical-computing promises us a compact single-shot system with high speed and energy efficiency (optical operations / electronic operations ~$${10}^{3}$$ 10 3 ), neither necessitating reference wave nor repetitive steps. Importantly, our processor is endowed with salient generalization ability and robustness against diverse structured light and adverse effects (mean squared error ~$$10^{(-5)}$$ 10 ( - 5 ) ). We further raise a universal model interpretation paradigm to reveal the underlying physical mechanisms in the hybrid processor, as distinct from conventional ‘black-box’ networks. Such interpretation algorithm can improve the detection efficiency up to 25-fold. We also complete the theory of optoelectronic network enabling its efficient training. This work not only contributes to the explorations on OAM physics and applications, and also broadly inspires the advanced links between intelligent computing and physical effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.