COVID-19 is a disease caused by SARS CoV-2 by producing structural proteins and non-structural proteins. SARS CoV-2 uses a spike glycoprotein to bind ACE-2 receptors in host cells and uses main protease to replicate. This research aims to screen green tea catechin derivates as an antiviral for SARS CoV-2 through inhibition of spike glycoprotein (6LZG) and main protease (5R7Y). In silico studies carried out are molecular docking, prediction of physicochemical properties, and prediction of toxicity. The potential inhibition was assessed based on binding affinity and interaction of amino acid residues. From the molecular docking process showed that epicatechin and epigallocatechin provide inhibition to spike glycoprotein better than nafamostat indicated by binding affinity of -5.2 kcal/mol and -4.5 kcal/mol, while epigallocatechin gallate and epicatechin gallate provide inhibiton to main protease better than lopinavir with binding affinity of -8.7 kcal/mol and -8.3 kcal/mol. The results of the physicochemical properties prediction showed that only epigallocatechin gallate that did not fulfill five Lipinski's rule. Based on the toxicity class LD50, the derivates of catechin belong to classes 4 and 6. In conclusion, it can be known that epicatechin and epigallocatechin can be developed as an antiviral for SARS CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.