: Aloe vera is a medicinal plant species of the genus Aloe with a long history of usage around the world. Acemannan, considered one of the main bioactive polysaccharides of Aloe vera, possesses immunoregulation, anti-cancer, anti-oxidation, wound healing and bone proliferation promotion, neuroprotection, and intestinal health promotion activities, among others. In this review, recent advancements in the extraction, purification, structural characteristics and biological activities of acemannan from Aloe vera were summarized. Among these advancements, the structural characteristics of purified polysaccharides were reviewed in detail. Meanwhile, the biological activities of acemannan from Aloe vera determined by in vivo, in vitro and clinical experiments are summarized, and possible mechanisms of these bioactivities were discussed. Moreover, the latest research progress on the use of acemannan in dentistry and wound healing was also summarized in details. The structure-activity relationships of acemannan and its medical applications were discussed. Finally, new perspectives for future research work on acemannan were proposed. In conclusion, this review summarizes the extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, and provides information for the industrial production and possible applications in dentistry and wound healing in the future.
The structural evolutions and kinetics of melt-quenched poly(L-lactic acid) (PLLA) during the process of isothermal physical aging below the glass transition temperature (T(g)) were investigated by time-resolved infrared spectroscopy. The results show that local ordered structure is developed with aging time. Such local ordered structure shows the same characteristic band at 918 cm(-1) as that of the mesomorphic structure formed during the unaxially drawn process of PLLA from the glassy state. On the basis of spectroscopic evidence, we therefore proposed that the so-called local ordered structure formed by physical aging can be ascribed to a kind of mesophase of PLLA. Of particular note, a very small amount of mesophase already exists in the initial state of melt-quenched PLLA sample, whereas it is totally undetectable in the melt-quenched poly(D,L-lactide) (PDLLA) sample. By temperature-dependent IR spectroscopy, it is found that the local ordered structure formed during the physical aging process will be "partially molten" rather than "totally molten" in the temperature region corresponding to the physical aging peak of aged PLLA. Such an observation can explain the phenomenon of physical aging enhanced cold crystallization rate.
Metabolic profiling in liver and serum of mice was studied for the combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEN), through gas chromatography mass spectrum. The spectrum of serum and liver sample of mice, treated with individual 2 mg/kg DON, 20 mg/kg ZEN, and the combined DON + ZEN with final concentration 2 mg/kg DON and 20 mg/kg ZEN for 21 days, were deconvoluted, aligned and identified with MS DIAL. The data matrix was processed with univariate analysis and multivariate analysis for selection of metabolites with variable importance for the projection (VIP) > 1, t-test p value < 0.05. The metabolic pathway analysis was performed with MetaMapp and drawn by CytoScape. Results show that the combined DON and ZEN treatment has an obvious “antagonistic effect” in serum and liver tissue metabolic profiling of mice. The blood biochemical indexes, like alkaline phosphatase, alanine transaminase, and albumin (ALB)/globulin (GLO), reveal a moderated trend in the combined DON + ZEN treatment group, which is consistent with histopathological examination. The metabolic pathway analysis demonstrated that the combined DON and ZEN treatment could down-regulate the valine, leucine and isoleucine biosynthesis, glycine, serine and threonine metabolism, and O-glycosyl compounds related glucose metabolism in liver tissue. The metabolic profiling in serum confirmed the finding that the combined DON and ZEN treatment has an “antagonistic effect” on liver metabolism of mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.