Valosin-containing protein/p97(VCP) is a hexameric ATPase vital to protein degradation during endoplasmic reticulum stress. It regulates diverse cellular functions including autophagy, chromatin remodeling, and DNA repair. In addition, mutations in VCP cause inclusion body myopathy, Paget disease of the bone, and frontotemporal dementia (IBMPFD), as well as amyotrophic lateral sclerosis. Nevertheless, how the VCP activities were regulated and how the pathogenic mutations affect the function of VCP during stress are not unclear. Here we show that the small ubiquitin-like modifier (SUMO)-ylation of VCP is a normal stress response inhibited by the disease-causing mutations in the N-domain. Under oxidative and endoplasmic reticulum stress conditions, the SUMOylation of VCP facilitates the distribution of VCP to stress granules and nucleus, and promotes the VCP hexamer assembly. In contrast, pathogenic mutations in the VCP N-domain lead to reduced SUMOylation and weakened VCP hexamer formation upon stress. Defective SUMOylation of VCP also causes altered co-factor binding and attenuated endoplasmic reticulum-associated protein degradation. Furthermore, SUMO-defective VCP fails to protect against stress-induced toxicity in Drosophila. Therefore, our results have revealed SUMOylation as a molecular signaling switch to regulate the distribution and functions of VCP during stress response, and suggest that deficiency in VCP SUMOylation caused by pathogenic mutations will render cells vulnerable to stress insults.Valosin-containing protein (VCP/p97, cdc48, 2 is a highly conserved member of AAA (ATPase associated with diverse cellular activities) family proteins. It is mainly composed of N-domain and two ATPase domains. By forming a homohexamer and binding various co-factors via the N-domain, VCP helps to remodel, unfold, or degrade protein substrates using the energy derived from ATP hydrolysis (1-3). Due to its cellular abundance and broad interaction with a number of co-factors, key substrates, and regulators of the ubiquitin proteasome system, VCP has emerged as a vital modulator of a large variety of cellular activities, including protein degradation, ER stress response, autophagy/mitophagy, endosomal trafficking, cell cycle, and DNA repair (2, 5, 6). However, the factors that regulate VCP activities are not clear.The importance of VCP is also demonstrated by its association with cancer and degenerative diseases. VCP is highly expressed in non-small cell lung carcinoma (7), and its expression is correlated with tumor progression and prognosis (8). On the other hand, mutations in VCP have been associated with degenerative diseases, including inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS) (6, 9). Most pathogenic mutations of VCP are found in the N-domain, with a few in the ATPase domains (10). The pathology of VCP-associated degenerative diseases features ubiquitin-positive inclusions. Although some of the pathogenic VCP mutation...
BackgroundThe prevalence of BRCA1/2 variants in Chinese breast cancer patients varies among studies. Germline or somatic BRCA1/2 mutations are associated with sensitivity to poly(ADP-ribose) polymerase-1 inhibitors and DNA-damaging agents. We aimed to investigate the distribution of both somatic and germline BRCA1/2 variants in unselected Chinese breast cancer patients, and explore their roles in tumor phenotype and disease prognosis.Methods507 breast cancer patients, unselected for family history of breast cancer or age at diagnosis, were prospectively enrolled from West China Hospital between Feb. 2008 and Feb. 2014. BRCA1/2 variants in the exons/flanking regions were detected in fresh-frozen tumors using next-generation sequencing and confirmed by independent methods. Germline/somatic status was validated by Sanger sequencing in paired blood/normal tissue.ResultsBRCA1/2 pathogenic or likely pathogenic (P/LP) variants were detected in 50 patients (9.9%), including 40 germline carriers (18 in BRCA1, 22 in BRCA2), 9 patients with somatic variants (3 in BRCA1, 6 in BRCA2), and 1 patient with concurrent germline/somatic variants in BRCA2. The triple-negative (21.4%) and Luminal B (9.7%) subtypes had higher rates of BRCA1/2 variants. In patients with disease stage 0~II, presence of a germline or somatic BRCA1 P/LP variant increased the risk of relapse as compared to non-carriers [univariate hazard ratio (HR): 3.70, P = 0.04]. Germline BRCA1 P/LP variants, which were associated with aggressive tumor phenotypes, predicted worse disease-free survival in the subgroup of stage 0~II (HR: 4.52, P = 0.02) and N0 (HR: 5.4, P = 0.04) compared to non-carriers.ConclusionA high frequency of germline and somatic BRCA1/2 P/LP variants was detected in unselected Chinese breast cancer patients. Luminal B subtype should be considered as a high-risk population of BRCA1/2 mutation, in addition to triple-negative breast cancer. BRCA1 status was associated with aggressive tumor phenotype and worse disease progression in early stage breast cancer patients.
The objective of the present study was to develop and apply a streptavidin-alkaline phosphatase labeling system of indirect immunohistochemistry (SP-IHC) to detect antigenic distribution and localization regularity of duck plague virus (DPV) vaccine antigens in paraformaldehyde-fixed paraffin-embedded tissues of experimentally vaccinated ducklings. Male New Zealand rabbits were immunized with purified DPV antigens, which were engaged by a combination of differential centrifugation and sucrose-density gradient ultracentrifugation. The rabbit anti-DPV polyclonal antibodies were purified and used as the primary antibodies. Forty-eight 28-d-old DPV-free Pekin ducklings were subcutaneously inoculated with attenuated DPV vaccine in the immunization group and sterile PBS in the control group. The tissues were collected at sequential time points between 4 h and 18 wk postvaccination (PV) and were prepared for SP-IHC observation. The presence of DPV-specific antigens was first observed in the liver and spleen at 12 h PV; in the bursa of Fabricius, thymus, Harderian gland, esophagus, and intestinal tract at 1 d PV; and in the heart, lung, kidney, pancreas, and brain at 3 d PV. The positive staining reaction could be detected in the vaccinated duckling tissues until 18 wk PV, and no positive staining cells could be observed in the controls. The highest levels of positive staining reaction were found in the liver, spleen, bursa of Fabricius, thymus, and intestinal tract, whereas a few DPV vaccine antigens were distributed in the heart, pancreas, and esophagus. The target cells had a ubiquitous distribution, especially in the mucosal epithelial cells, lamina propria cells, macrophages, hepatocytes, and lymphocytes, which served as the principal sites for antigen localization. These findings demonstrated that SP-IHC was a reliable method for detecting antigenic distribution and localization regularity of DPV vaccine antigens in routine paraffin sections. The present study may be useful for describing proliferation and distribution regularity of DPV vaccine in the vaccinated duckling tissues and enhance further studies and clinical application of attenuated DPV vaccine.
To determine the distribution of duck plague virus (DPV) gE protein in paraformaldehyde-fixed, paraffin-embedded tissues of experimentally DPV-infected ducks, an indirect immunoperoxidase assay was established to detect glycoprotein E (gE) protein for the first time. The rabbit anti-His-gE serum, raised against the recombinant His-gE fusion protein expressed in Escherichia coli BL21 (DE3), was prepared and purified. Western blotting and indirect immunofluorescence analysis showed that the anti-His-gE serum had a high level of reactivity and specificity and could be used as the first antibody for further experiments to study the distribution of DPV gE protein in DPV-infected tissues. A number of DPV gE proteins were distributed in the bursa of Fabricius, thymus, spleen, liver, esophagus, duodenum, jejunum, ileum, and kidney of DPV-infected ducks and a few DPV gE were distributed in the Harders glands, myocardium, cerebrum, and lung, whereas the gE was not seen in the skin, muscle, and pancreas. Moreover, DPV gE was expressed abundantly in the cytoplasm of lymphocytes, reticulum cells, macrophages, epithelial cells, and hepatocytes. The present study may be useful not only for describing the characteristics of gE expression and distribution in infected ducks but also for understanding the pathogenesis of DPV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.