Lidar-based localization doesn’t have high accuracy in open scenarios with few features, and behaves poorly in robot kidnap recovery. To address this problem, an improved Particle Filter localization is proposed who could achieve robust robot kidnap detection and pose error compensation. UAPF adaptively updates the covariance by Jacobian from Ultra-wide Band information instead of predetermined parameters, and determines whether robot kidnap occurs by a novel criterion called KNP (Kidnap Probability). Besides, pose fusion of ranging-based localization and PF-based localization is conducted to decrease the uncertainty. To achieve more accurate ranging-based localization, linear regression of ranging data adopts values of maximum probability rather than average distances. Experiments show UAPF can achieve robot kidnap recovery in less than 2 s and position error is less than 0.1 m in a hall of 40 by 15 m, when the currently prevalent lidar-based localization costs more than 90 s and converges to wrong position.
A globally consistent map is the basis of indoor robot localization and navigation. However, map built by Rao-Blackwellized Particle Filter (RBPF) doesn't have high global consistency which is not suitable for long-term application in large scene. To address the problem, we present an improved RBPF Lidar SLAM system with loop detection and correction named LCPF. The efficiency and accuracy of loop detection depend on the segmentation of submaps. Instead of dividing the submap at fixed number of laser scan like existing method, Dynamic Submap Segmentation is proposed in LCPF. This segmentation algorithm decreases the error inside the submap by splitting the submap where there is high scan match error and later rectifies the error by an improved pose graph optimization between submaps. In order to segment the submap at appropriate point, when to create a new submap is determined by both the accumulation of scan match error and the particle distribution. Furthermore, LCPF uses branch and bound algorithm as basic detector for loop detection and multiple criteria to judge the reliability of a loop. In the criteria, a novel parameter called usable ratio was proposed to measure the useful information that a laser scan containing. Finally, comparisons to existing 2D-Lidar mapping algorithm are performed with a series of open dataset simulations and real robot experiments to demonstrate the effectiveness of LCPF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.