BackgroundAcyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids.ResultsTo explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family.ConclusionThese acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids.
Artemisinin is an effective anti-malarial drug isolated from Artemisia annua L. (Chinese wormwood), but the content of artemisinin in A. annua is low. In the present study we explored the possibility of using genetic engineering to increase the artemisinin content of A. annua by suppressing the expression of SQS (squalene synthase), a key enzyme of sterol pathway (a pathway competitive with that of artemisinin biosynthesis) by means of a hairpin-RNA-mediated RNAi (RNA interference) technique. A total of 23 independent transgenic A. annua plants were obtained through Agrobacterium tumefaciens-mediated transformation, which was confirmed by PCR and Southern-blot analyses. HPLC-evaporative light-scattering detection analysis showed that the artemisinin content of some transgenic plants was significantly increased, with the highest values reaching 31.4 mg/g dry weight, which is about 3.14-fold the content observed in untransformed control plants. Real-time reverse transcription-PCR analysis demonstrated that the expression of SQS was suppressed significantly, and GC-MS analysis showed that sterol was efficiently decreased in the transgenic plants. The present study demonstrated that genetic-engineering strategy of RNAi is an effective means of increasing artemisinin content in plants.
Artemisinin, a sesquiterpene lactone endoperoxide derived from Artemisia annua L., is the most effective antimalarial drug. In an effort to increase the artemisinin production, abscisic acid (ABA) with different concentrations (1, 10 and 100 µM) was tested by treating A. annua plants. As a result, the artemisinin content in ABA-treated plants was significantly increased. Especially, artemisinin content in plants treated by 10 µM ABA was 65% higher than that in the control plants, up to an average of 1.84% dry weight. Gene expression analysis showed that in both the ABA-treated plants and cell suspension cultures, HMGR, FPS, CYP71AV1 and CPR, the important genes in the artemisinin biosynthetic pathway, were significantly induced. While only a slight increase of ADS expression was observed in ABA-treated plants, no expression of ADS was detected in cell suspension cultures. This study suggests that there is probably a crosstalk between the ABA signaling pathway and artemisinin biosynthetic pathway and that CYP71AV1, which was induced most significantly, may play a key regulatory role in the artemisinin biosynthetic pathway.
The substrate specificity of acyl-ACP thioesterase (TE) plays an essential role in controlling the fatty acid profile produced by type II fatty acid synthases. Here we identify two groups of residues that synergistically determine different substrate specificities of two acyl-ACP TEs from Cuphea viscosissima (CvFatB1 and CvFatB2). One group (V194, V217, N223, R226, R227, and I268 in CvFatB2) is critical in determining the structure and depth of a hydrophobic cavity in the N-terminal hotdog domain that binds the substrate’s acyl moiety. The other group (255-RKLSKI-260 and 285-RKLPKL-289 in CvFatB2) defines positively charged surface patches that may facilitate binding of the ACP moiety. Mutagenesis of residues within these two groups results in distinct synthetic acyl-ACP TEs that efficiently hydrolyze substrates with even shorter chains (C4- to C8-ACPs). These insights into structural determinants of acyl-ACP TE substrate specificity are useful in modifying this enzyme for tailored fatty acid production in engineered organisms.
In plants and bacteria that use a Type II fatty acid synthase, isozymes of acyl-acyl carrier protein (ACP) thioesterase (TE) hydrolyze the thioester bond of acyl-ACPs, terminating the process of fatty acid biosynthesis. These TEs are therefore critical in determining the fatty acid profiles produced by these organisms. Past characterizations of a limited number of plant-sourced acyl-ACP TEs have suggested a thiol-based, papain-like catalytic mechanism, involving a triad of Cys, His, and Asn residues. In the present study, the sequence alignment of 1019 plant and bacterial acyl-ACP TEs revealed that the previously proposed Cys catalytic residue is not universally conserved and therefore may not be a catalytic residue. Systematic mutagenesis of this residue to either Ser or Ala in three plant acyl-ACP TEs, CvFatB1 and CvFatB2 from Cuphea viscosissima and CnFatB2 from Cocos nucifera, resulted in enzymatically active variants, demonstrating that this Cys residue (Cys348 in CvFatB2) is not catalytic. In contrast, the multiple sequence alignment, together with the structure modeling of CvFatB2, suggests that the highly conserved Asp309 and Glu347, in addition to previously proposed Asn311 and His313, may be involved in catalysis. The substantial loss of catalytic competence associated with site-directed mutants at these positions confirmed the involvement of these residues in catalysis. By comparing the structures of acyl-ACP TE and the Pseudomonas 4-hydroxybenzoyl-CoA TE, both of which fold in the same hotdog tertiary structure and catalyze the hydrolysis reaction of thioester bond, we have proposed a two-step catalytic mechanism for acyl-ACP TE that involves an enzyme-bound anhydride intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.