The biology and behaviour of the psyllid Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Liviidae), the major insect vector of bacteria associated with huanglongbing, have been extensively studied with respect to host preferences, thermal requirements, and responses to visual and chemical volatile stimuli. However, development of the psyllid in relation to the ontogeny of immature citrus flush growth has not been clearly defined or illustrated. Such information is important for determining the timing and frequency of measures used to minimize populations of the psyllid in orchards and spread of HLB. Our objective was to study how flush ontogeny influences the biotic potential of the psyllid. We divided citrus flush growth into six stages within four developmental phases: emergence (V1), development (V2 and V3), maturation (V4 and V5), and dormancy (V6). Diaphorina citri oviposition and nymph development were assessed on all flush stages in a temperature controlled room, and in a screen-house in which ambient temperatures varied. Our results show that biotic potential of Diaphorina citri is not a matter of the size or the age of the flushes (days after budbreak), but the developmental stage within its ontogeny. Females laid eggs on flush V1 to V5 only, with the time needed to commence oviposition increasing with the increasing in flush age. Stages V1, V2 and V3 were most suitable for oviposition, nymph survival and development, and adult emergence, which showed evidence of protandry. Flush shoots at emerging and developmental phases should be the focus of any chemical or biological control strategy to reduce the biotic potential of D. citri, to protect citrus tree from Liberibacter infection and to minimize HLB dissemination.
Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Psyllidae) is a vector of huanglongbing, a disease of citrus that in Asia is caused by ‘Candidatus Liberibacter asiaticus’ (α‐Proteobacteria) (Las). Acquisition of Las by D. citri appears to be variable, and this variability may be due to the suitability of the host plants and their tissues for acquisition. Therefore, this study aimed to determine the effect of symptom severity of the disease on the feeding behaviour of D. citri. Use of an electrical penetration graph showed that the pathway phase of D. citri consisted of four waveforms, A, B, C, and D; waveforms A and B have not been reported for D. citri before. The remaining waveforms, E1, E2, and G, conform to those described before for D. citri. The duration of the non‐penetration period did not differ between healthy or infected plants. However, in moderately and severely symptomatic plants, the duration of the pathway phase increased, whereas the phloem phase was shorter. In all diseased plants, the times to first and sustained salivation in the phloem were longer than those in control plants, with the times being related to symptom severity. As symptom expression increased, the percentage of time spent by psyllids salivating during the phloem phase increased; however, the percentage of time spent in phloem activities reduced gradually from ca. 74% in the control plants to ca. 8% in the severely symptomatic plants. In contrast, the percentage of time spent on xylem activities increased, as did the proportion of psyllids feeding from xylem. The differences in the durations of the E waveforms on plants showing different levels of symptom expression may account for differences in acquisition found amongst studies; therefore, future work on the acquisition and transmission of Las needs to carefully document symptom expression.
The Asiatic citrus psyllid (Diaphorina citri Kuwayama [Hemiptera: Sternorrhyncha: Psyllidae] is a vector of huanglongbing (citrus greening), a devastating disease of citrus caused by phloem-limited bacteria. Growing guava (Psidium guajava) as an intercrop appears to be a successful means of reducing psyllid numbers within citrus orchards; however, the mechanism by which such a reduction is achieved is unknown. To determine the repellent effect of guava leaf and factors attributed to this activity, responses of adult psyllids to guava leaf and its odor were evaluated in cage tests and Y-tube olfactometer test. The results showed that guava leaf possessed a repellent effect against the adult citrus psyllids. Fewer psyllids were found on citrus leaves in the presence of guava foliage than in its absence. Young and old guava leaf showed equal repellent activity. By covering the guava shoots with net cloth, it was revealed that the repellent effect of guava leaf against adult psyllids on citrus was attributed to the volatile compounds, rather than physical factors. The olfactometer response of adult psyllids to guava leaf odor was dosage-dependent. Between guava odor and control, only 35.00%, 25.00% and 16.25% of the psyllids moved toward guava odor when presented with 5.0, 10.0 and 15.0 g of guava shoots, respectively. The olfactometer experiments also showed that both male and female psyllids responded similarly to the guava leaf odor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.