To obtain fiber materials with pronounced chemical-biological protection, metal (Zn or Ta) nanoparticles were jointly applied with polyelectrolyte complexes of enzymes and polypeptides being their stabilizers. Computer modeling revealed the preferences between certain polyelectrolyte partners for N-acyl-homoserine lactone acylase and hexahistidine-tagged organophosphorus hydrolase (His6-OPH) possessing the quorum quenching (QQ) behavior with bacterial cells. The combinations of metal nanoparticles and enzymes appeared to function better as compared to the combinations of the same QQ-enzymes with antibiotics (polymyxins), making it possible to decrease the applied quantities by orders of magnitude while giving the same effect. The elimination of Gram-positive and Gram-negative bacterial cells from doubly modified fiber materials notably increased (up to 2.9-fold), whereas His6-OPH retained its hydrolytic activity in reaction with organophosphorus compounds (up to 74% of initially applied activity). Materials with the certain enzyme and Zn nanoparticles were more efficient against Bacillus subtilis cells (up to 2.1-fold), and Ta nanoparticles acted preferentially against Escherichia coli (up to 1.5-fold). Some materials were proved to be more suitable for combined modification by metal nanoparticles and His6-OPH complexes as antimicrobial protectants.
A wide variety of microbiological hazards stimulates a constant development of new protective materials against them. For that, the application of some nanomaterials seems to be very promising. Modification of usual fibers with different metal nanoparticles was successfully illustrated in the work. Tantal nanoparticles have shown the highest antibacterial potency within fibrous materials against both gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria. Besides, the effect of tantal nanoparticles towards luminescent Photobacterium phosphoreum cells estimating the general sample ecotoxicity was issued for the first time.
All-new bactericidal solutions to be used in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. By means of electric impulse and disperse condensate means, water and alcoholic (ethanolic) colloidal nanodispersed systems of metals have been procured and also their oxides based on: argentum (Ag), titanium dioxide (TiO), ferrous oxide (FeO), tantalum oxide (TaO), vanadium oxide (VO2), cobaltous oxide (CoO), tantalum dioxide TaO2, zink oxide (ZnO), cupric oxide (CuO), a mixed solution of: titanium dioxide (TiO), aluminium oxide (Al2O) and molybdenum dioxide (MoO). The research has been made on culture of dentobacterial plaque and mixed culture, issued from gingival spaces. The composition of culture was identified with S. aureus, S. epidermidis and nonfermentable kinds of E. coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. Dilution step is tenfold (10-1; 10-2; IO-'; 10-4; 10-5; 10-6; 10-7). The bactericidal activity ofpowder specimen of glass, used to produce dental filling material and disintegrates of composite materials, issued by «StomaDent» CJSC, processed by Ag and FeO2 nanoparticles, have been studied. Tested materials have long, up to 19 days and more, bactericidal activity.
The collective monograph is devoted to discussing the history of creation, studying the properties, neutralizing and using organophosphorus neurotoxins, which include chemical warfare agents, agricultural crop protection chemical agents (herbicides and insecticides) and medicines. The monograph summarizes the results of current scientific research and new prospects for the development of this field of knowledge in the 21st century, including the use of modern physicochemical methods for experimental study and theoretical analysis of biocatalysis and its mechanisms based on molecular modeling with supercomputer power. The book is intended for specialists who are interested in the current state of research in the field of organophosphorus neurotoxins. The monograph will be useful for students, graduate students, researchers specializing in the field of physical chemistry, physicochemical biology, chemical enzymology, toxicology, biochemistry, molecular biology and genetics, biotechnology, nanotechnology and biomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.