Most injection molding simulation packages use the no-flow temperature (NFT) as a means of determining whether the polymer flows or is solid. The NFT is not well defined, and a standard method for measuring it does not exist. A sensitivity analysis of the filling stage has been carried out with two different packages [VISI Flow (Vero Software Limited, Gloucestershire, UK) and Moldflow (Autodesk, Inc., San Rafael, CA)] to estimate the influence of the NFT on the main processing parameters. The NFT has a large influence on the thickness of the frozen layer, but it does not appreciably affect the filling pressure. Because the NFT affects the frozen layer, an effect on the estimation of shrinkage and warpage is expected. Software packages have also been compared, and similar simulations have been found to produce contrasting results. A simple correlation for NFT estimation, derived from the Cross-Williams-Landel-Ferry equation, is proposed for both amorphous and semicrystalline polymers.
Hydrophobic microporous membranes are utilized in membrane distillation (MD) processes, e.g. seawater desalination at moderate temperatures. The vapour permeability of commercial hydrophobic membranes with different pore sizes (0.2-1 micron) was characterized through a simple apparatus designed-on-purpose. A cylindrical vessel had a face closed by the membrane and the other connected to a thin graduate tube. The water level variation in the tube is recorded and related to the vapour flux across the membrane. Measurements were taken in the temperature range 20-80°C. A fan tangential to membrane surface was employed to maintain a constant driving force for vapour transport. Vapour flux did not depend on pore dimension, but the membrane and support material resulted to influence the mass transfer. Moreover, the results showed that the main resistance for mass transfer is located in the permeate side, thus addressing future works on the set up of a MD pilot unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.