Previous studies have indicated that nitric oxide, a labile freely diffusible biological messenger synthesized by nitric oxide synthase, may modulate light transduction and signal transmission in the retina. In the present work, the large size of retinal cells in tiger salamander (Ambystoma tigrinum) allowed the utilization of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry and nitric oxide synthase immunocytochemistry to delineate the cell-specific intracellular localization of nitric oxide synthase. NADPH-diaphorase activity was highly concentrated in the outer retina, in rod and cone inner segment ellipsoids, and between and adjacent to the photoreceptor cell bodies in the outer nuclear layer. Examination of enzymatically isolated retinal cells indicated that outer nuclear layer NADPH-diaphorase activity was localized to the distal processes of the retinal glial (Müller) cells and to putative bipolar cell Landolt clubs. Less intense NADPH-diaphorase activity was seen in the photoreceptor inner segment myoid region, in a small number of inner nuclear layer cells, in cap-like configurations at the distal poles of cells in the ganglion cell layer and surrounding ganglion cell layer somata, and in punctate form within both plexiform layers, the pigment epithelium, and the optic nerve. Nitric oxide synthase-like immunoreactivity was similarly localized, but was also concentrated along a thin sublamina centered within the inner plexiform layer. The potential for nitric oxide generation at multiple retinal sites suggests that this molecule may play a number of roles in the processing of visual information in the retina.
1. Electrophysiological recordings of single-unit responses, multiunit responses, and electrically evoked field potentials have been made using carbon fiber-containing micropipettes in cats anesthetized with barbiturate and immobilized with gallamine triethiodide. Recording sites sampled cortical regions throughout the insula, including zones more ventrally situated and more rostral and caudal than those described in the preceding, companion paper. One-hundred eleven cells in total were tested with a battery of different types of stimuli. 2. Stimuli were divided into two classes, according to either the intensity of the stimulus or its form. These are called physiological forms, or levels of stimulation, and nonphysiological forms or levels. The nonphysiological forms of stimuli for visual, somatosensory, and auditory modalities consisted of (for visual stimuli): 1) electrical stimulation of the optic nerve or 2) bright flashes light at 100% contrast; for somatosensory, electrical stimulation of the radial nerve by implanted cuff electrodes; and for auditory, stimulation with bursts of white noise generated at high intensities (80-100 dB) or with a loud click stimulus. Physiologically relevant levels of stimuli for these same modalities were: moving bars of light projected onto a tangent screen in front of the animal (visual); light cutaneous deformation, hair displacement, and light pressure delivered to various regions on the surface of the cat's body with hand-held probes, or delivered manually (somatosensory); and white noise generated at low intensities (ca. 40 dB) (auditory). 3. Cells situated in dorsal insular regions responded to visual stimuli when levels of sensory activation were employed using natural means, within normal, physiologically relevant limits. Responses to auditory or somatosensory stimulation were observed in this region only when very intense forms of "natural" stimulation, or when electrical stimulation (nonphysiologically relevant levels of stimulation) was delivered. In this latter case, the same cells in several instances could be made to appear polymodally responsive. With cells situated in ventral insular regions, some polymodal responses to physiologically relevant levels of stimulation were noted, although it was considerably more common to obtain unimodal responses. Nonphysiological levels of activation yielded evidence for a polymodal convergence onto the greater proportion of cells recorded. 4. Field potential recordings with microelectrodes revealed widely overlapping representations of all modalities in both dorsal and ventral regions of the insula, irrespective of the sensitivity displayed by the local neuronal r
1. Extracellular recordings from 304 neurons were obtained with carbon fiber-containing multibarrel micropipettes. The cells were isolated in the insula in cats anesthetized with barbiturate and immobilized with gallamine triethiodide. Cells were tested with visual stimuli in the form of bars of light, moving edges, and square-wave, drifting grating patterns. 2. The spatial extent of the visually responsive region of insular cortex was assessed and was found to be limited to a surface area of approximately 6-8 mm2, the perimeter being delimited caudally by visually unresponsive cortex of the anterior sylvian gyrus, rostrally by the cortex surrounding the posterior third of the orbital sulcus (ventral bank), dorsally by the rostral extension of the dorsal bank of the anterior ectosylvian sulcus, and ventrally by a visually unresponsive zone bounded by a region about 2 mm2 ventrolateral from the anterior ectosylvian sulcal infolding. Furthermore, a group of unimodal, visually responsive cells often was found in the upper bank of the anterior rhinal sulcus. 3. The possibility of there being a visuotopic organization of insular neurons was examined by analyzing the distribution of receptive-field representation of neurons in sequential penetrations, as well as by searching for spatial progressions in the locations of visually responsive areas within the region. No such clear-cut organization was found among the cells of the insula. 4. Visually responsive neurons were encountered in groups, within electrode penetrations. These groupings were roughly segregated into three distinct levels within the depth of the cortex: the first between the pial surface and 600 micron, the second between 1,100 micron and 1,800 micron, and the third between 2,000 micron and 2,500 micron. 5. Neurons were classified according to their velocity sensitivity, directional preference, orientation sensitivity, length preference, modality specificity, response to electrical stimulation of extrageniculostriate regions, and response to light stimulation in the presence of microiontophoretically administered bicuculline methiodide (BMI). 6. Cells of superficial layers tended to exhibit a preference for high-velocity movements of light bars (600 degrees s-1), whereas those of deeper laminae generally preferred relatively lower velocity movements (60 degrees s-1). The clear preferences of many cells for certain directions of movement within the 360 degrees arc suggested the presence of a dynamic orientation sensitivity. 7. Proportionately more cells preferred moving bars (57%) to small moving spots (43%).(ABSTRACT TRUNCATED AT 400 WORDS)
The extent of changes in glucose metabolism resulting from ipsilateral and contralateral eye activity in the posterior cortex of the hooded rat was demonstrated by means of the C-14 2-deoxyglucose autoradiographic technique. By stimulating one eye with square wave gratings and eliminating efferent activation from the other by means of enucleation or intraocular TTX injection, differences between ipsilaterally and contralaterally based visual activity in the two hemispheres were maximized. Carbon-14 levels in layer IV of autoradiographs of coronal sections were measured and combined across sections to form right and left matrices of posterior cortex metabolic activity. A difference matrix, formed by subtracting the metabolic activity matrix of cortex contralateral to the stimulated eye from the ipsilateral "depressed" matrix, emphasized those parts of the visual cortex that received monocular visual input. The demarcation of striate cortex by means of cholinesterase stain and the examination of autoradiographs from sections cut tangential to the cortical surface aided in the interpretation of the difference matrices. In striate cortex, differences were maximal in the medial monocular portion, and the lateral or binocular portion was shown to be divided metabolically into a far lateral contralaterally dominant strip along the cortical representation of the vertical meridian, and a more medial region of patches of more or less contralaterally dominant binocular input. Lateral peristriate differences were less than those of striate cortex, and regions of greater and lesser monocular input could be distinguished. We did not detect differences between the two hemispheres in either anterior or medial peristriate areas, thus indicating either completely binocular input (which seems unlikely given the retinotopic organization of these regions), or a greater dependence than in the lateral peristriate on inputs that were not affected by the visual manipulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.