Electron microscopy of dividing fission yeast cells shows establishment of an annular rudiment (AR) of electron-transparent material under the old cell wall as the first sign of elaboration of the cell plate. The AR grows centripetally, finally closing at the mid-point of the cell. During the inward growth of the AR it is thickened by addition of denser material which becomes the scar plug after fission; the electron-transparent material is lost at fission. Lying always between the cytoplasmic membrane and the cell wall is a dark layer of variable thickness. This layer becomes markedly thickened into a fillet at the base of the centripetally growing cell plate. The fission process begins after the cell plate is completely elaborated. One striking feature of fission is the migration of dense material from the fillet at the base of the cell plate outwardly through the matrix of the cell wall to its final resting place as a dark ring, a "fuscannel," adjacent to the fission scar. The inclusion of Golgi bodies in many sections suggests their involvement in cell plate elaboration, presumably through production of the dense bodies which are seen to fuse with the dark layer proximal to the growing cell plate.
The extracellular alpha-amylase activity of the yeast Schwanniomyces alluvius has been purified by anion-exchange chromatography on DEAE-cellulose and gel-filtration chromatography on Sephadex G-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and N-terminal amino acid analysis of the purified sample indicated that the enzyme preparation was homogeneous. The enzyme is a glycoprotein having a molecular mass of 52 kilodaltons (kDa) estimated by SDS-PAGE and 39 kDa by gel filtration on Sephadex G-100. Chromatofocusing shows that it is an acidic protein. It is resistant to trypsin but sensitive to proteinase K. Its activity is inhibited by the divalent cation chelators EDTA and EGTA and it is insensitive to sulfhydryl-blocking agents. Exogenous divalent cations are inhibitory as are high concentrations of monovalent salts. The enzyme has a pH optimum between 3.75 and 5.5 and displays maximum stability in the pH range of 4.0-7.0. Under the conditions tested, the activity is maximal between 45 and 50 degrees C and is very thermolabile. Analysis of its amino acid composition supports its acidic nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.