Understanding the suppression of ferroelectricity in perovskite thin films is a fundamental issue that has remained unresolved for decades. We report a synchrotron x-ray study of lead titanate as a function of temperature and film thickness for films as thin as a single unit cell. At room temperature, the ferroelectric phase is stable for thicknesses down to 3 unit cells (1.2 nanometers). Our results imply that no thickness limit is imposed on practical devices by an intrinsic ferroelectric size effect.
We report the observation of periodic 180 degrees stripe domains below the ferroelectric transition in thin films. Epitaxial PbTiO3 films of thickness d=1.6 to 42 nm on SrTiO3 substrates were studied using x-ray scattering. Upon cooling below T(C), satellites appeared around Bragg peaks indicating the presence of 180 degrees stripe domains of period Lambda=3.7 to 24 nm. The dependence of Lambda on d agrees well with theory including epitaxial strain effects, while the suppression of T(C) for thinner films is significantly larger than that expected solely from stripe domains.
According to recent experiments and predictions, the orientation of the polarization at the surface of a ferroelectric material can affect its surface chemistry. Here we demonstrate the converse effect: the chemical environment can control the polarization orientation in a ferroelectric film. In situ synchrotron x-ray scattering measurements show that high or low oxygen partial pressure induces outward or inward polarization, respectively, in an ultrathin PbTiO3 film. Ab initio calculations provide insight into surface structure changes observed during chemical switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.