Based on the full BABAR data sample, we report improved measurements of the ratios RðDÞ ¼ BðB ! D À Þ=BðB ! D' À ' Þ and RðD Ã Þ ¼ BðB ! D Ã À Þ=BðB ! D Ã ' À ' Þ, where ' refers to either an electron or muon. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure RðDÞ ¼ 0:440 AE 0:058 AE 0:042 and RðD Ã Þ ¼ 0:332 AE 0:024 AE 0:018, which exceed the standard model expectations by 2:0 and 2:7, respectively. Taken together, the results disagree with these expectations at the 3:4 level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. Kinematic distributions presented here exclude large portions of the more general type III two-Higgs-doublet model, but there are solutions within this model compatible with the results.
Based on the full BABAR data sample, we report improved measurements of the ratios R(D(*))=B(B[over ¯]→D(*)τ(-)ν[over ¯](τ))/B(B[over ¯]→D(*)ℓ(ℓ)(-)ν[over ¯](ℓ)), where ℓ is either e or μ. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D)=0.440±0.058±0.042 and R(D(*))=0.332±0.024±0.018, which exceed the standard model expectations by 2.0σ and 2.7σ, respectively. Taken together, our results disagree with these expectations at the 3.4σ level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.
The BABAR Collaboration BABAR, the detector for the SLAC PEP-II asymmetric e + e − B Factory operating at the Υ (4S) resonance, was designed to allow comprehensive studies of CP -violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagnetic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems , VME-and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.
We present the results of a search for dark matter weakly interacting massive particles (WIMPs) in the mass range below 20 GeV/c^{2} using a target of low-radioactivity argon with a 6786.0 kg d exposure. The data were obtained using the DarkSide-50 apparatus at Laboratori Nazionali del Gran Sasso. The analysis is based on the ionization signal, for which the DarkSide-50 time projection chamber is fully efficient at 0.1 keVee. The observed rate in the detector at 0.5 keVee is about 1.5 event/keVee/kg/d and is almost entirely accounted for by known background sources. We obtain a 90% C.L. exclusion limit above 1.8 GeV/c^{2} for the spin-independent cross section of dark matter WIMPs on nucleons, extending the exclusion region for dark matter below previous limits in the range 1.8-6 GeV/c^{2}.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.