The Hohenberg-Kohn theorem proves the existence of a universal energy functional. But still its explicit structure is unknown. Unknown parts of the energy functional, namely the kinetic and the exchange interaction energy are discussed. Based on a functional formulation of the virial theorem "functional equations" for these unknown quantities are deduced establishing a relation between the functional and its derivative. Though there is no general formalism for solving such equations they may be used to determine the structure of the unknown functionals. Starting with simple formal assumptions for the exchange energy, some well-known approximations are derived for this functional thus proving the value of this new technique.Das Hohenberg-Kohn-Theorem weist die Existenz eines universellen Energiefunktionals nach. Allerdings ist seine explizite Struktur nach wie vor unbekannt. Die unbekannten Teile des Energiefunktionals werden diskutiert. Dies sind, das Funktional der kinetischen und der Austausch-Energie. Aufbauend auf einer funktionalen Formulierung des Virial-Theorems werden "Funktionalgleichungen" fur diese unbekannten Energieanteile abgeleitet, welche die Funktionale und ihre Funktionalableitungen in Beziehung zueinander setzen. Obwohl kein allgemeiner Losungsformalismus fur derartige Gleichungen bekannt ist, lassen sie sich zur Bestimmung der unbekannten Funktionale verwenden. Ausgehend von einfachen, formalen Annahmen hinsichtlich der Austausch-Energie werden wohlbekannte Naherungen fur dieses Funktional abgeleitet. Dies zeigt den Nutzen dieser neuen Technik auf.
We present the concept of a many-electron theory for the calculation of the energy difference between an undisturbed metallic host lattice and a crystal disturbed by stored hydrogen atoms. With the help of an elimination procedure a multidimensional system of equations is reduced to a one-particle Schrödinger equation for the electron of the hydrogen. The interaction with the electrons of the metal is then described by a dynamical potential depending on the state of the electron itself. A first order approximation with static screening is discussed and then generalized to a self-consistent calculation of one-electron functions which are used as a basis for expansions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.