The origin of the pseudogap and its relationship with superconductivity in the cuprates remains vague. In particular, the interplay between the pseudogap and magnetism is mysterious. Here we investigate the newly discovered nodal gap in hole-doped cuprates using a combination of three experimental techniques applied to one, custom made, single crystal. The crystal is an antiferromagnetic La 2 À x Sr x CuO 4 with x ¼ 1.92%. We perform angleresolved photoemission spectroscopy measurements as a function of temperature and find: quasi-particle peaks, Fermi surface, anti-nodal gap and below 45 K a nodal gap. Muon spin rotation measurements ensure that the sample is indeed antiferromagnetic and that the doping is close, but below, the spin-glass phase boundary. We also perform elastic neutron scattering measurements and determine the thermal evolution of the commensurate and incommensurate magnetic order, where we find that a nodal gap opens well below the commensurate ordering at 140 K, and close to the incommensurate spin density wave ordering temperature of 30 K.
Experimental and hydrodynamic simulation results of submicrosecond time scale underwater electrical explosions of planar Cu and Al wire arrays are presented. A pulsed low-inductance generator having a current amplitude of up to 380 kA was used. The maximum current rise rate and maximum power achieved during wire array explosions were dI/dt≤830 A/ns and ∼10 GW, respectively. Interaction of the water flow generated during wire array explosion with the target was used to estimate the efficiency of the transfer of the energy initially stored in the generator energy to the water flow. It was shown that efficiency is in the range of 18%–24%. In addition, it was revealed that electrical explosion of the Al wire array allows almost double the energy to be transferred to the water flow due to efficient combustion of the Al wires. The latter allows one to expect a significant increase in the pressure at the front of converging strong shock waves in the case of cylindrical Al wire array underwater explosion.
Results related to the generation of an extreme state of water with pressure up to (4.3 ± 0.2)·1011 Pa, density up to 4.2 ± 0.1 g/cm3, and temperature up to 2.2 ± 0.1 eV in the vicinity of the implosion axis of a converging strong shock wave are reported. The shock wave was produced by the underwater electrical explosion of a cylindrical Cu wire array. A ∼8 kJ pulse generator with a current amplitude ≤550 kA and rise time of 350 ns was used to explode arrays having varying lengths, radii, and number of wires. Hydrodynamic numerical simulations coupled to the experimental data of the shock wave propagation in water, rate of energy deposition into the array, and light emission from the compressed water in the vicinity of the implosion axis were used to determine the pressure, density, and temperature profiles during the implosion. Results of a comparison between these parameters obtained with the SESAME and quantum molecular dynamics data bases of equation of state for water are reported as well. Also, the dependences of the maximal pressure in the vicinity of the implosion axes on the array radius and the deposited energy density per unit length are reported.
Results of ∼200 kbar pressure generation at 50 μm distance from the implosion axis of the converging shock wave produced by an underwater electrical explosion of a cylindrical wire array are reported. The array was exploded using a submicrosecond high-current generator (stored energy of ∼4.2 kJ, current amplitude of ∼325 kA, rise time of ∼1 μs). Multiframe shadow imaging of the shock wave was used to determine its time of flight. These data were applied for calculating the pressure at the vicinity of the implosion axis using one dimensional hydrodynamic calculations and the Whitham approach. However, it was found that in the case of wire array radius ≤5 mm, multiframe imaging cannot be used at the final stage of the shock wave implosion because of possible changes in the optical properties of the water. Optical and spectroscopic methods based on either the change in the refraction index of the optical fiber or spectroscopy of the plasma formed inside the capillary placed at the implosion axes were used for shock wave characterization. A satisfactory agreement was found between the results obtained by these methods.
The results of the first experiments on the underwater electrical explosion of a spherical wire array generating a converging strong shock wave are reported. Using a moderate pulse power generator with a stored energy of ≤6 kJ and discharge current of ≤500 kA with a rise-time of ∼300 ns, explosions of Cu and Al wire arrays of different diameters and with a different number and diameter of wires were tested. Electrical, optical, and destruction diagnostics were used to determine the energy deposited into the array, the time-of-flight of the shock wave to the origin of the implosion, and the parameters of water at that location. The experimental and numerical simulation results indicate that the convergence of the shock wave leads to the formation of an extreme state of water in the vicinity of the implosion origin that is characterized by pressure, temperature, and compression factors of (2 ± 0.2) × 1012 Pa, 8 ± 0.5 eV, and 7 ± 0.5, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.