Silicon bulk micromachined piezoresistive pressure sensors are very sensitive to applied stresses: that is, applied pressure and/or packaging-related stresses. Device encapsulation has been observed to affect the electrical output of the pressure sensor significantly. The magnitude of the zero applied pressure output voltage (i.e., the offset voltage) that can be attributed to a thin film encapsulant is proportional to the magnitude of the roomtemperature thermal stress of that film. Parylene C coatings have been used as encapsulants in this work. Finite element and analytical modeling techniques were used to evaluate the effect of material property variation on the offset of a pressure sensor. A simple, linear expression of offset as a function of a material property parametric group, that includes: parylene thickness, parylene biaxial modulus, parylene CTE, silicon thickness, and annealing temperature; has been established. Experimental analysis of parylene coated pressure sensors and parylene coated silicon and gallium arsenide wafers was performed to confirm the resulting model. Known variations in parylene material properties caused by processing (i.e., uncontrolled deposition, annealing, and high temperature storage) have been used as an experimental vehicle for this purpose. An empirical relationship between offset voltage on parylene coated devices and room-temperature thermal stress on parylene coated wafers that have been exposed to the same processing is a linear expression with a similar slope to the modeling results. Furthermore, stress measurements from parylene coated silicon wafers and parylene coated gallium arsenide wafers have been used to estimate the parylene biaxial modulus (approximately 5000 MPa) and the parylene CTE (approximately 50 ppm/°C) independently. These material properties were observed to shift following parylene annealing and high temperature storage exposure experiments in a manner that is consistent with the established model.
Silicon bulk micromachined piezoresistive pressure sensors are sensitive to stresses caused by the application of inorganic thin films typically used for passivation purposes, and the change in stress that is caused by temperature changes in the operating environment of the sensor. Stress behavior over temperature is characterized for both thermal oxides grown on silicon at thicknesses from 0.18 μm to 0.36 μm, and PECVD silicon nitride films at thicknesses from 0.40 μm to 0.80 μn. Electrical parametric behavior is characterized for typical piezoresistive pressure sensors with these thin films deposited and patterned in several proposed passivation schemes. A finite element analysis is performed to predict how device parameters vary as a function of thin film patterning and properties. Correlations are drawn between model predictions, independent thin film behavior, and device performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.