The transition of the 14-meric deoxyoligonucleotide duplex d-(ACCCCCTTTTTTTG).d-(CAAAAAAAGGGGGT) from the B- to the A-conformation in water/trifluorethanol (TFE) solution was studied with the use of circular dichroism. An increase in the fraction of TFE induces a two-step B-A transition. In the first step, up to 73% TFE, the A-form is generated from the GC-rich part; in the second step, 73-82% TFE, the AT-rich part shifts to the A-form. By this we suggest the existence of a B/A junction near 73% TFE. Emergence of the B/A junction has been directly confirmed with the use of distamycin A and netropsin, ligands known to selectively bind to AT stretches of B-DNA. It can be shown that both ligands suppress formation of the A-form in the B-philic part. The free energy value for the B/A junction was estimated to be 2.1 kcal/mol, which agrees well with known data for polymeric DNAs. The obtained results may have biological relevance in connection with recently published x-ray data about the occurrence of the B/A junction in the complex of DNA with reverse transcriptase of HIV.
Pt-bis-netropsin is a synthetic sequence-specific DNA-binding ligand comprizing two netropsin-like fragments which are linked in a tail-to-tail manner via a cis-diammineplatinum (II) residue. The CD studies and thermodynamic characterization of the DNA-binding properties exhibited by this compound reveal that it forms two types of complexes with poly[d(AT)].poly[d(AT)] and DNA oligomers containing nucleotide sequences 5'-CC(TA)n CC-3', with n = 4, 5 and 6. The first type corresponds to the binding of Pt-bis-netropsin in the extended conformation and is characterized by the saturating ratio of one bound Pt-bis-netropsin molecule per 9 AT-base pairs. The second type of the complex corresponds to the binding of Pt-bis-netropsin to DNA in the folded hairpin form. The binding approaches saturation level when one Pt-bis-netropsin molecule is bound per four or five AT-base pairs. The hairpin form of Pt-bis-netropsin complex is built on the basis of parallel side-by-side peptide motif which is inserted in the minor DNA groove. The CD spectral profiles reflecting the binding of Pt-bis-netropsin in the hairpin form are different from those observed for binding of another bis-netropsin with the sequence Lys-Gly-Py-Py-Gly-Gly-Gly-Py-Py-Dp, where Py is a N-propylpyrrole amino acid residue and Dp is a dimethylaminopropylamino residue. The hairpin form of this bis-netropsin is formed on the basis of antiparallel side-by-side peptide motif. The CD spectra obtained for complexes of this polyamide in the hairpin form with poly[d(AT)].poly[d(AT)] exhibit positive CD band with a peak at 325 nm, whereas the CD spectral profiles for the second complex of Pt-bis-Nt with poly[d(AT)].poly[d(AT)] and short DNA oligomers have two intense positive CD bands near 290 nm and 328 nm. This reflects the fact that two bis-netropsins use different structural motifs on binding to DNA in the hairpin form.
We studied the interaction of cis-diammine Pt(II)-bridged bis-netropsin, cis-diammine Pt(II)-bridged bis-distamycin and oligomethylene-bridged bis-netropsin with synthetic DNA fragments containing pseudosymmetrical AT-rich nucleotide sequences and compared it with the interaction of the parent compounds netropsin and distamycin A. For fragments containing multiple blocks of (A/T) 4 and (T/A) 4 separated by zero, one, two and three GC-base pairs, DNase I footprinting and CD spectroscopy studies reveal that 5P-TTTTAAAA-3P is the strongest affinity binding site for cis-diammine Pt(II)-bridged bis-netropsin and bis-distamycin. They both bind less strongly to a DNA region containing the sequence 5P-AAAATTTT-3P. Netropsin, distamycin A and oligomethylene-bridged bis-netropsin exhibit far less sequence discrimination.z 1998 Federation of European Biochemical Societies.
We have investigated the binding ability to DNA of compounds belonging to the 2-azaanthraquinone-type structure and have examined the effect on the activity of DNA gyrase as well as on mammalian topoisomerases in vitro. Using different biophysical techniques it was found that one of these ligands, 9-((2-dimethylamino)ethyl)amino)-6-hydroxy-7-methoxy-5, 10-dihydroxybenzo[g]isoquinoline-5,10-dione (TPL-I), is an intercalating DNA binding agent, whereas the parent compound tolypocladin (TPL) and a derivative (TPL-II) showed almost no similar affinity to DNA. CD measurements demonstrated a significant and selective binding tendency of TPL-I to alternating purine/pyrimidine sequences with some preference for poly(dA-dT). poly(dA-dT). Tm values were increased of the ligand complex with the alternating AT-containing duplex polymer. The binding to various DNAs was characterized by CD and visible absorption spectral changes. From the latter, different binding constants of 6.2 x 10(5) and 1.5 x 10(5) M-1 were obtained for poly(dA-dT).poly(dA-dT) and poly(dA). poly(dT), respectively. Sedimentation measurements with supercoiled pBR322 plasmid DNA clearly indicated an intercalative binding mechanism associated with an unwinding angle of about 18 degrees. These results suggest that the intercalative binding of TPL-I is promoted by the 2-(dimethylamino)ethylamino group substituted on carbon 9 of the anthraquinone system. The cytotoxic compound TPL-I, but not TPL or TPL-II, effectively inhibited the DNA supercoiling reaction of DNA gyrase and the activity of mammalian topoisomerases I and II as measured by the relaxation assay. TPL-I affects the cleavage reaction of topoisomerases on a single site located in alternating purine-pyrimidine sequence regions. The inhibitory potency of TPL-I can be ascribed to a blocking of cleavage sites on the DNA substrate, which correlates with the sequence preference of the ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.