Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed “reads” are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions.
Pt-bis-netropsin is a synthetic sequence-specific DNA-binding ligand comprizing two netropsin-like fragments which are linked in a tail-to-tail manner via a cis-diammineplatinum (II) residue. The CD studies and thermodynamic characterization of the DNA-binding properties exhibited by this compound reveal that it forms two types of complexes with poly[d(AT)].poly[d(AT)] and DNA oligomers containing nucleotide sequences 5'-CC(TA)n CC-3', with n = 4, 5 and 6. The first type corresponds to the binding of Pt-bis-netropsin in the extended conformation and is characterized by the saturating ratio of one bound Pt-bis-netropsin molecule per 9 AT-base pairs. The second type of the complex corresponds to the binding of Pt-bis-netropsin to DNA in the folded hairpin form. The binding approaches saturation level when one Pt-bis-netropsin molecule is bound per four or five AT-base pairs. The hairpin form of Pt-bis-netropsin complex is built on the basis of parallel side-by-side peptide motif which is inserted in the minor DNA groove. The CD spectral profiles reflecting the binding of Pt-bis-netropsin in the hairpin form are different from those observed for binding of another bis-netropsin with the sequence Lys-Gly-Py-Py-Gly-Gly-Gly-Py-Py-Dp, where Py is a N-propylpyrrole amino acid residue and Dp is a dimethylaminopropylamino residue. The hairpin form of this bis-netropsin is formed on the basis of antiparallel side-by-side peptide motif. The CD spectra obtained for complexes of this polyamide in the hairpin form with poly[d(AT)].poly[d(AT)] exhibit positive CD band with a peak at 325 nm, whereas the CD spectral profiles for the second complex of Pt-bis-Nt with poly[d(AT)].poly[d(AT)] and short DNA oligomers have two intense positive CD bands near 290 nm and 328 nm. This reflects the fact that two bis-netropsins use different structural motifs on binding to DNA in the hairpin form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.