Mesenchymal stem cells (MSCs) represent a promising therapeutic approach in nerve tissue engineering. To date, the local implantation of MSC in injured nerves has been the only route of administration used. In case of multiple sites of injury, the systemic administration of cells capable of reaching damaged nerves would be advisable. In this regard, we found that an intravenous administration of adipose-derived MSC (ASC) 1 week after sciatic nerve crush injury, a murine model of acute axonal damage, significantly accelerated the functional recovery. Sciatic nerves from ASC-treated mice showed the presence of a restricted number of undifferentiated ASC together with a significant improvement in fiber sprouting and the reduction of inflammatory infiltrates for up to 3 weeks. Besides the immune modulatory effect, our results show that ASC may contribute to peripheral nerve regeneration because of their ability to produce in culture neuroprotective factors such as insulin-like growth factor I, brain-derived neurotrophic factor, or basic fibroblast growth factor. In addition to this production in vitro, we interestingly found that the concentration of glial-derived neurotrophic factor (GDNF) was significantly increased in the sciatic nerves in mice treated with ASC. Since no detectable levels of GDNF were observed in ASC cultures, we hypothesize that ASC induced the local production of GDNF by Schwann cells. In conclusion, we show that systemically injected ASC have a clear therapeutic potential in an acute model of axonal damage. Among the possible mechanisms promoting nerve regeneration, our results rule out a process of trans-differentiation and rather suggest the relevance of a bystander effect, including the production of in situ molecules, which, directly or indirectly through a cross-talk with local glial cells, may modulate the local environment with the down-regulation of inflammation and the promotion of axonal regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.