The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km. The measurement is based on data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies.An arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of (6.5 ± 7.4 (stat.) +8.3 −8.0 (sys.)) ns was measured corresponding to a relative difference of the muon neutrino velocity with respect to the speed of light (v − c)/c = (2.7 ± 3.1 (stat.) +3.4 −3.3 (sys.)) × 10 −6 . The above result, obtained by comparing the time distributions of neutrino interactions and of protons hitting the CNGS target in 10.5 µs long extractions, was confirmed by a test performed at the end of 2011 using a short bunch beam allowing to measure the neutrino time of flight at the single interaction level.
After completion of the data taking for the v(mu) -> v(tau) oscillation search, the CHORUS lead-scintillator calorimeter was used in the 1998 run as an active target. High-statistics samples of charged-current interactions were collected in the CERN SPS west area neutrino beam. This beam contained predominantly muon (anti-)neutrinos from sign-selected pious and kaons. We measure the flux and energy spectrum of the incident neutrinos and compare them with beam simulations. The neutrino-nucleon and anti-neutrino-nucleon differential cross-sections are measured in the range 0.01 < x < 0.7, 0.05 < y < 0.95, 10 < E-v < 200 GeV. We extract the neutrino-nucleon structure functions F-2(x, Q(2)), xF(3) (x, Q(2)), and R(x, Q2) and compare these with results from other experiments. (c) 2005 Elsevier B.V. All rights reserved
The OPERA experiment was designed to search for ν_{μ}→ν_{τ} oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ν_{τ} interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the ν_{μ}→ν_{τ} appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ν_{τ} candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of ν_{μ}→ν_{τ} oscillations in appearance mode with a significance larger than 5σ.
Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many extensions of the Standard Model. These particles can, among other things, explain the origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Universe and provide a dark matter candidate. The SHiP experiment will be able to search for HNLs produced in decays of heavy mesons and travelling distances ranging between O(50 m) and tens of kilometers before decaying. We present the sensitivity of the SHiP experiment to a number of HNL's benchmark models and provide a way to calculate the SHiP's sensitivity to HNLs for arbitrary patterns of flavour mixings. The corresponding tools and data files are also made publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.