Abstract. Between January 2005 and December 2006, the larval habitats and seasonal abundances of 21 species of Culicoides (Diptera: Ceratopogonidae) found in association with livestock on a farm in northern Sardinia were studied. Culicoides were collected using two light traps (one placed in a sheep shed and the other near water ponds) and reared from mud collected in and along the margins of a small and a large water pond. The mammalophilic Culicoides imicola Kieffer and Culicoides newsteadi Austen were the most prevalent (>95%) of 20 species in the sheep shed, whereas the ornithophilic Culicoides univittatus Vimmer, Culicoides sahariensis Kieffer, Culicoides festivipennis Kieffer, Culicoides circumscriptus Kieffer and Culicoides cataneii Clastrier were most abundant in the traps set at the ponds (73%) and in 16 species of Culicoides reared from laboratory-maintained mud samples retrieved from three microhabitats (a non-vegetated pond shoreline, 20 cm above a pond shoreline, the shoreline of a secondary, permanently inundated, grasscovered pool). The species reared most abundantly from along the pond shoreline were C. festivipennis, C. circumscriptus and C. sahariensis, whereas those most prevalent at the grassed pool were C. cataneii and C. festivipennis. C. imicola was found to breed preferentially in mud 20 cm above the pond shoreline, whereas C. newsteadi was restricted almost entirely to the grassed pool, which had a high organic matter content. Using the light trap and adult emergence data, the seasonal abundance patterns of the eight species of Culicoides were determined. In general, there was good correspondence between light trap catches and emergence trends. Well-defined emergence peaks indicate four or five generations for C. festivipennis and C. circumscriptus and three generations for C. cataneii , C. newsteadi and Culicoides jumineri Callot & Kremer. The emergence trends for C. imicola and C. sahariensis were unimodal, but, because they stretched over several months, indicated that a number of overlapping generations had occurred. Adults of C. imicola were reared and captured only sporadically in the first half of the year, gradually building to a peak in autumn. Conversely, C. newsteadi was reared throughout the year and displayed three clearly defined peaks (in winter, spring and autumn);
BackgroundBluetongue (BT) epidemics have affected the Mediterranean island of Sardinia since 2000. While Culicoides imicola represents the main bluetongue virus (BTV) vector, other European Culicoides biting midges, possibly implicated in virus transmission, have been detected here. Understanding their distribution, seasonal abundance, and infection rates is necessary to predict disease incidence and spread across coastal and inland areas, and to define their role in virus overwintering.MethodsBiting midge abundance was determined by light traps on selected farms representing diverse climatic conditions of Sardinia. Livestock-associated Culicoides species were morphologically and molecularly identified. Infection rates in prevailing midge species captured in 2013 during a BTV-1 outbreak were determined using RT-qPCR based virus detection in insect body pools, supplemented by specific body region analyses. The seasonal infection prevalence in Culicoides samples collected in 2001 in a BTV-2 affected farm was also determined.ResultsThe Newsteadi complex (C. newsteadi species A and species B) prevailed among all biting midge species (47.7 %), followed by C. imicola (27.8 %) and the Obsoletus complex (C. obsoletus and C. scoticus) (17.6 %). Whilst Culicoides imicola was more abundant along the coast, the Newsteadi complex was frequently collected at higher altitude and the Obsoletus complex was notably associated to cattle farms. Culicoides pulicaris and C. punctatus abundance was found to be marginal in all farms. BTV was detected in parous female samples of all these species, and the full dissemination of the virus within the body of C. imicola, C. obsoletus, C. scoticus, and Newsteadi complex species was confirmed by analyses of thorax and head, containing salivary glands. Higher infection rates were associated with C. scoticus, C. newsteadi species A and species B, compared to C. imicola. The virus was detected in C. newsteadi species A and C. obsoletus in winter and spring, whereas it was mainly found in summer and autumn in C. imicola.ConclusionsIn Sardinia, bluetongue virus is transmitted by multiple Culicoides vectors, including C. imicola and the Newsteadi complex being the most important. The Newsteadi complex and other midge species can play an important role in internal areas and are likely to be directly involved in virus overwintering.
The enumerative sampling plan required 87 or 343 leaves to estimate the population density in extensive or intensive ecological studies respectively. Binomial plans would be more practical and efficient for control purposes, needing average sample sizes of 17, 20 and 14 leaves to take a pest management decision in order to avoid fruit damage higher than 1% in cultivars with big, medium and small fruits respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.