Representative European wheat cultivars were tested under quarantine containment for their susceptibility to Tilletia indica, the cause of Karnal bunt of wheat. Fifteen winter and 15 spring wheat ( Triticum aestivum ) and 11 durum wheat ( Triticum durum ) cultivars were inoculated by boot injection just prior to ear emergence to test their physiological susceptibility. Selected cultivars were then re-tested by spray inoculation after ear emergence to determine their morphological susceptibility, which is a better predictor of field susceptibility. At maturity, the ears and seeds were assessed for incidence and severity of disease. For the physiological susceptibility tests, 13/15 winter wheat cultivars were infected and the percentage of infected seeds ranged from 1 to 32%. For spring cultivars, 13/15 cultivars were infected and the percentage of infected seeds ranged from 1 to 48%. For the durum cultivars, 9/11 were infected and the percentage of infected seeds ranged from 2 to 95%. Across all cultivars, 35/41 were infected. Based on historical Karnal bunt susceptibility categories using coefficients of infection, one cultivar was classed as highly susceptible, three as susceptible, 11 as moderately susceptible, 20 as resistant and only six as highly resistant. The spray-inoculation morphological susceptibility tests broadly confirmed the physiological susceptibility results, although lower levels of infection were observed. Overall, the range of susceptibility was similar to that found in cultivars grown in Karnal bunt affected countries. The results demonstrate that European wheat cultivars are susceptible to T. indica and thus could potentially support the establishment of T. indica if introduced into Europe.
As part of developing a European Pest Risk Analysis (PRA) for Tilletia indica , the causal agent of Karnal bunt of wheat, teliospore survival studies were done outside under quarantine containment at three European sites (Norway, UK, Italy). At each site, experiments were set up in three consecutive years (Experiments 1, 2 & 3) to determine teliospore survival over time (1-3 years) at 5, 10 and 20 cm depths. Experiments were sampled annually and survival assessed in relation to teliospore recovery and to germination at recovery (T0) and 3 months after recovery in case of burial-induced dormancy ( T3 ). Teliospores survived at all three sites at all depths over all the time periods studied. At each site, there was no evidence of a marked decline in teliospore recovery between sampling years, except in one set of years in one Norwegian experiment. There was no consistent effect of depth on recovery. In general there was little evidence for a marked decline in teliospore germination between sampling years. There was some evidence of a decrease in germination with increasing depth in the UK, and for some time-depth interactions. After 3 years' incubation (Experiment 1), mean teliospore recovery and mean germination were: UK: 61% recovery and 31% ( 33% ) germination for T0 (and T3 ); Italy: 30% recovery and 36% ( 29% ) germination; and Norway: 12% recovery and 19% ( 49% ) germination. Germination for laboratory controls ranged from 20 -59% (UK), 18-41% (Italy) and 28 -59% (Norway). There was no evidence for burial-induced dormancy except in Norway. Teliospores of T. indica can survive for at least three years in European soils. This prolonged period of survival could support establishment of the pathogen if it were introduced into areas of European cereal production.
A new fungal species constantly associated with hazelnut (Corylus avellana) fructification starting from its primordia is described. The fungus is associated with hazelnut fruit during all their developmental stages, being consistently more present in spring (March-June). A 4-year survey has been conducted, from young fruit formation to full kernel maturity including also the post-harvest phase, to collect fungi associated with damaged/discoloured kernels. A collection of 60 isolates of a new species has been obtained in this study, which is here described as Didymella corylicola sp. nov. Multi-locus phylogenies based on four genomic loci (nuITS and LSU rDNA, RPB2 and TUB2) in combination with morphological data confirmed the fungus to represent a new species of Didymella (Didymellaceae). The occurrence of D. corylicola sp. nov. might have an impact on the quality of hazelnut production by contributing to kernel defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.