Background:The neutron β-decay asymmetry parameter A 0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A 0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ ≡ g A /g V , which under assumption of the conserved vector current hypothesis (g V = 1) determines g A . Precise values for g A are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron β-decay angular correlation performed with UCN. This article reports the most precise result for A 0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A 0 .
Ultra-cold neutrons (UCN), neutrons with energies low enough to be confined
by the Fermi potential in material bottles, are playing an increasing role in
measurements of fundamental properties of the neutron. The ability to
manipulate UCN with material guides and bottles, magnetic fields, and gravity
can lead to experiments with lower systematic errors than have been obtained in
experiments with cold neutron beams. The UCN densities provided by existing
reactor sources limit these experiments. The promise of much higher densities
from solid deuterium sources has led to proposed facilities coupled to both
reactor and spallation neutron sources. In this paper we report on the
performance of a prototype spallation neutron-driven solid deuterium source.
This source produced bottled UCN densities of 145 +/-7 UCN/cm3, about three
times greater than the largest bottled UCN densities previously reported. These
results indicate that a production UCN source with substantially higher
densities should be possible
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.