Stressful life experiences are likely etiological factors in sporadic forms of Alzheimer's disease (AD). Many AD patients hypersecrete glucocorticoids (GCs), and their GC levels correlate with the rate of cognitive impairment and extent of neuronal atrophy. Severity of cognitive deficits in AD correlates strongly with levels of hyperphosphorylated forms of the cytoskeletal protein TAU, an essential mediator of the actions of amyloid  (A), another molecule with a key pathogenic role in AD. Our objective was to investigate the sequential interrelationships between these various pathogenic elements, in particular with respect to the mechanisms through which stress might precipitate cognitive decline. We thus examined whether stress, through the mediation of GCs, influences TAU hyperphosphorylation, a critical and early event in the cascade of processes leading to AD pathology. Results from healthy, wild-type, middle-aged rats show that chronic stress and GC induce abnormal hyperphosphorylation of TAU in the hippocampus and prefrontal cortex (PFC), with contemporaneous impairments of hippocampus-and PFC-dependent behaviors. Exogenous GC potentiated the ability of centrally infused A to induce hyperphosphorylation of TAU epitopes associated with AD and cytoplasmic accumulation of TAU, while previous exposure to stress aggravated the biochemical and behavioral effects of GC in A-infused animals. Thus, lifetime stress/GC exposure may have a cumulative impact on the onset and progress of AD pathology, with TAU hyperphosphorylation serving to transduce the negative effects of stress and GC on cognition.
N-CAM180, the molecular form of the three neural cell adhesion molecules (N-CAM) with the largest cytoplasmic domain, is accumulated at sites of cell-cell contact (cell bodies, neurites, growth cones) in cultures of neuroblastoma and cerebellum. At these sites the cytoskeleton-membrane linker protein brain spectrin and actin are also accumulated. Brain spectrin copurifies with N-CAM180 by immunoaffinity chromatography and binds specifically to N-CAM180 but not to N-CAM140 or N-CAM120 in a solid-phase binding test. These observations indicate an association of N-CAM180 with the cytoskeleton in vivo. This association may underlie the reduced lateral mobility of N-CAM180 in the surface membrane compared to N-CAM140 (Pollerberg et al. 1986). Together with the fact that N-CAM180 is only expressed after termination of neuron migration in vivo (Persohn and Schachner, unpublished) these results suggest a role for N-CAM180 in stabilization of cell contacts.
Axonin-1 and NrCAM were previously shown to be involved in the in vivo guidance of commissural growth cones across the floor plate of the embryonic chicken spinal cord. To further characterize their role in axon pathfinding, we developed a two-dimensional coculture system of commissural and floor-plate explants in which it was possible to study the behavior of growth cones upon floor-plate contact. Although commissural axons readily entered the floor plate under control conditions, perturbations of either axonin-1 or NrCAM interactions prevented the growth cones from entering the floor-plate explants. The presence of antiaxonin-1 resulted in the collapse of commissural growth cones upon contact with the floor plate. The perturbation of NrCAM interactions also resulted in an avoidance of the floor plate, but without inducing growth-cone collapse. Therefore, axonin-1 and NrCAM are crucial for the contact-mediated interaction between commissural growth cones and the floor plate, which in turn is required for the proper guidance of the axons across the ventral midline and their subsequent rostral turn into the longitudinal axis.
In order to investigate the expression of cell adhesion molecules in synapses, we have studied the localization of the neural cell adhesion molecule N-CAM in the cerebellum and hippocampus of adult mice by immunocytological and immunochemical methods. Of the three molecular components of N-CAM with relative molecular masses (Mr) of 120, 140, and 180 kD, N-CAM 120 is not detectable in synaptosomal membranes, whereas N-CAM 140 is expressed on both pre- and postsynaptic membranes and N-CAM 180 is restricted to postsynaptic sites, with localization of the N-CAM 180-specific epitope in postsynaptic densities. Specificity of immunoreactivity is indicated by the observation that antibodies to the neural cell adhesion molecule L1 do not label synaptic membranes, whereas antibodies to two major components of postsynaptic densities, actin and erythrocyte spectrin, react with synaptic structures. Interestingly, N-CAM 180 is only detectable in subpopulations of synapses in the intact tissue. Isolated synaptosomes, opened for unimpeded accessibility of antibody by hypoosmotic treatment, also reveal a partial expression of N-CAM 180 in that 67% are labeled by antibodies to N-CAM 180, while antibodies to actin and erythrocyte spectrin react with 95% and 88% of all synaptosomes, respectively. N-CAM 180 does not appear to be differentially expressed in synapses of a particular morphological type, but is detectable in all types of synapses in the cerebellum and hippocampus, except for mossy fiber synapses and synapses between basket and Purkinje cells, which are generally N-CAM 180-negative. Since N-CAM 180 has been shown to be characteristic of stabilized or stabilizing cell contacts, possibly by its association with the cytoskeleton-membrane linker protein spectrin (Pollerberg et al.: J. Cell Biol. 101:1921-1929, '85; Nature 324:462-465, '86; Cell Tissue Res. 250:227-236, '87), we would like to suggest N-CAM 180 plays an important role in determining the stability of contacts between pre- and postsynaptic membranes and state of synaptic activity.
Abstract. Neural cell adhesion molecules of the immunoglobulin superfamily mediate cellular interactions via homophilic binding to identical molecules and heterophilic binding to other family members or structurally unrelated cell-surface glycoproteins. Here we report on an interaction between axonin-1 and Nr-CAM/ Bravo. In search for novel ligands of axonin-1, fluorescent polystyrene microspheres conjugated with axonin-1 were found to bind to peripheral glial cells from dorsal root ganglia. By antibody blockage experiments an axonin-1 receptor on the glial cells was identified as Nr-CAM. The specificity of the interaction was confirmed with binding studies using purified axonin-1 and Nr-CAM. In cultures of dissociated dorsal root ganglia antibodies against axonin-1 and Nr-CAM perturbed the formation of contacts between neurites and peripheral glial cells. Together, these results implicate a binding between axonin-1 of the neuritic and Nr-CAM of the glial cell membrane in the early phase of axon ensheathment in the peripheral nervous system. T hE development of the nervous system involves distinct cellular processes, including neuronal cell migration, axon outgrowth and guidance, synapse formation, and neuron-gila interactions such as myelination. Each of these activities requires precise cell-cell and cellextracellular matrix (ECM) t interactions, which are mediated by cell-surface glycoproteins and ECM components. Cell-surface glycoproteins with a function in cell adhesion during the development of the nervous system can be divided into three major structural classes: (a) integrins, which bind to various ECM components (Reichardt and Tomaselli, 1991;Hynes, 1992); (b) cadherins, which mediate cell-cell adhesion in a calcium-dependent manner (Takeichi, 1991); and (c) cell adhesion molecules (CAMs) of the Ig superfamily, which are involved in calcium-independent homophilic binding to identical molecules and heterophilic binding to other family members or structurally unrelated molecules (Jessell, 1988;Grumet, 1991;Brtimmendorf and Rathjen, 1993).Here we report on a novel interaction between the neural CAMs axonin-1 and Nr-CAM/Bravo. Both belong to a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.