In the present work, a methodology for setting up virgin stress conditions in discrete element models is proposed. The developed algorithm is applicable to discrete or coupled discrete/continuum modeling of underground excavation employing the discrete element method (DEM). Since the DEM works with contact forces rather than stresses there is a need for the conversion of pre-excavation stresses to contact forces for the DEM model. Different possibilities of setting up virgin stress conditions in the DEM model are reviewed and critically assessed. Finally, a new method to obtain a discrete element model with contact forces equivalent to given macroscopic virgin stresses is proposed. The test examples presented show that good results may be obtained regardless of the shape of the DEM domain.
SUMMARYAn advanced boundary element method (BEM) for solving two-(2D) and three-dimensional (3D) problems in materials with microstructural effects is presented. The analysis is performed in the context of Mindlin's Form-II gradient elastic theory. The fundamental solution of the equilibrium partial differential equation is explicitly derived. The integral representation of the problem, consisting of two boundary integral equations, one for displacements and the other for its normal derivative, is developed. The global boundary of the analyzed domain is discretized into quadratic line and quadrilateral elements for 2D and 3D problems, respectively. Representative 2D and 3D numerical examples are presented to illustrate the method, demonstrate its accuracy and efficiency and assess the gradient effect on the response. The importance of satisfying the correct boundary conditions in gradient elastic problems is illustrated with the solution of simple 2D problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.