The dissipation rate of seven currently used soybean and corn pesticides in two tropical soils (Ustox and Psamments) of Brazil was studied in a laboratory incubation experiment. Dissipation half-lives of pesticides ranged between 2 (monocrotofos) and 90 days (endosulfan-beta). The contrasting clay contents of the studied tropical soils (130 versus 470 g of clay kg(-1) of soil) did not influence the dissipation dynamics of pesticides substantially. Mineralization to CO(2) was high [up to 78% of the applied radioactivity (AR)] for the studied organophosphorus compounds and deltamethrin, which also formed considerable amounts of bound residues (>20% of AR) during the 80 days of incubation. The highest portion of nonextractable residues was found for alachlor and simazine (55-60% of AR). In contrast, the nonpolar trifluralin and endosulfan formed only small amounts of bound residues (mostly <20% of AR) but showed the highest dissipation half-lives (>14 days) in the studied soils, also due to a low mineralization rate. When endosulfan-sulfate, as the main metabolite of endosulfan, was considered, the half-life time of endosulfan compounds (sum of -alpha, -beta, and -sulfate) was enhanced to >160 days in both soils. In comparison with the laboratory experiments, dissipation half-life times of chlorpyrifos, endosulfan-alpha, and trifluralin were shortened by a factor of 10-30 in field trials with the same soils, which was related to the volatilization potential of pesticides from soils.
Results of laboratory batch studies often differ from those of outdoor lysimeter or field plot experiments--with respect to degradation as well as sorption. Laboratory micro-lysimeters are a useful device for closing the gap between laboratory and field by both including relevant transport processes in undisturbed soil columns and allowing controlled boundary conditions. In this study, sorption and degradation of the herbicide metsulfuron-methyl in a loamy silt soil were investigated by applying inverse modelling techniques to data sets from different experimental approaches under laboratory conditions at a temperature of 10 degrees C: first, batch-degradation studies and, second, column experiments with undisturbed soil cores (28 cm length x 21 cm diameter). The column experiments included leachate and soil profile analysis at two different run times. A sequential extraction method was applied in both study parts in order to determine different binding states of the test item within the soil. Data were modelled using ModelMaker and Hydrus-1D/2D. Metsulfuron-methyl half-life in the batch-experiments (t1/2 = 66 days) was shown to be about four times higher than in the micro-lysimeter studies (t1/2 about 17 days). Kinetic sorption was found to be a significant process both in batch and column experiments. Applying the one-rate-two-site kinetic sorption model to the sequential extraction data, it was possible to associate the stronger bonded fraction of metsulfuron-methyl with its kinetically sorbed fraction in the model. Although the columns exhibited strong significance of multi-domain flow (soil heterogeneity), the comparison between bromide and metsulfuron-methyl leaching and profile data showed clear evidence for kinetic sorption effects. The use of soil profile data had significant impact on parameter estimates concerning sorption and degradation. The simulated leaching of metsulfuron-methyl as it resulted from parameter estimation was shown to decrease when soil profile data were considered in the parameter estimation procedure. Moreover, it was shown that the significance of kinetic sorption can only be demonstrated by the additional use of soil profile data in parameter estimation. Thus, the exclusive use of efflux data from leaching experiments at any scale can lead to fundamental misunderstandings of the underlying processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.