Abstract-Internet video streaming applications have been demanding more bandwidth and higher video quality, especially with the advent of Virtual Reality (VR) and Augmented Reality (AR) applications. While adaptive streaming protocols like MPEG-DASH (Dynamic Adaptive Streaming over HTTP) allows video quality to be flexibly adapted, e.g., degraded when mobile network condition deteriorates, this is not an option if the application itself requires guaranteed 4K quality at all time. On the other hand, conventional end-to-end TCP has been struggling in supporting 4K video delivery across long-distance Internet paths containing both fixed and mobile network segments with heterogeneous characteristics. In this paper, we present a novel and practically-feasible system architecture named MVP (Mobile edge Virtualization with adaptive Prefetching), which enables content providers to embed their content intelligence as a virtual network function (VNF) into the mobile network operator's (MNO) infrastructure edge. Based on this architecture, we present a context-aware adaptive video prefetching scheme in order to achieve QoE-assured 4K video on demand (VoD) delivery across the global Internet. Through experiments based on a real LTE-A network infrastructure, we demonstrate that our proposed scheme is able to achieve QoE-assured 4K VoD streaming, especially when the video source is located remotely in the public Internet, in which case none of the state-of-the-art solutions is able to support such an objective at global Internet scale.Index Terms-MPEG-DASH, mobile edge computing, network function virtualization, prefetching, quality of experience, video on demand
In this paper, we present a Mobile Edge Computing (MEC) scheme for enabling network edge-assisted video adaptation based on MPEG-DASH (Dynamic Adaptive Streaming over HTTP). In contrast to the traditional over-the-top (OTT) adaptation performed by DASH clients, the MEC server at the mobile network edge can capture radio access network (RAN) conditions through its intrinsic Radio Network Information Service (RNIS) function, and use the knowledge to provide guidance to clients so that they can perform more intelligent video adaptation. In order to support such MECassisted DASH video adaptation, the MEC server needs to locally cache the most popular content segments at the qualities that can be supported by the current network throughput. Towards this end, we introduce a two-dimensional user Quality-of-Experience (QoE)-driven algorithm for making caching / replacement decisions based on both content context (e.g., segment popularity) and network context (e.g., RAN downlink throughput). We conducted experiments by deploying a prototype MEC server at a real LTE-A based network testbed. The results show that our QoE-driven algorithm is able to achieve significant improvement on user QoE over 2 benchmark schemes.
Abstract-In this letter, we analyse the trade-off between collision probability and code-ambiguity, when devices transmit a sequence of preambles as a codeword, instead of a single preamble, to reduce collision probability during random access to a mobile network. We point out that the network may not have sufficient resources to allocate to every possible codeword, and if it does, then this results in low utilisation of allocated uplink resources. We derive the optimal preamble set size that maximises the probability of success in a single attempt, for a given number of devices and uplink resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.