The material properties of normal cadaveric human cartilage in the ankle mortice (tibiotalar articulation) were evaluated to determine a possible etiologic mechanism of cartilage injury of the ankle when an obvious traumatic episode is not present. Using an automated indentation apparatus and the biphasic creep indentation methodology, creep indentation experiments were performed in five sites in the distal tibia, one site in the distal fibula, and eight sites in the proximal talus of 14 human ankles (seven pairs). Results showed significant differences in the mechanical properties of specific human ankle cartilage regions. Topographically, tibial cartilage is stiffer (1.19 MPa) than talar cartilage (1.06 MPa). Cartilage in the anterior medial portion of the tibia has the largest aggregate modulus (HA = 1.34 MPa), whereas the softest tissue was found to be in the posterior lateral (0.92 MPa) and the posterior medial (0.92 MPa) regions of the talus. The posterior lateral ridge of the talus was the thickest (1.45 mm) and the distal fibula was the thinnest (0.95 mm) articular cartilage. The largest Poisson's ratio was found in the distal fibula (0.08). The lowest and highest permeability were found in the anterior lateral regions of the astragalus (0.80 x 10(-15) m4N-1sec-1) and the posterior medial region of the tibia (1.79 x 10(-15) m4N-1sec-1), respectively. The anterior and posterior regions of the lateral and medial sites of the tibia were found to be 18-37% stiffer than the anatomically corresponding sites in the talus. The biomechanical results may explain clinically observed talar dome osteochondral lesions when no obvious traumatic event is present. Cartilage lesions in a repetitive overuse process in the ankle joint may be related to a disparity of mechanical properties between the articulating surfaces of the tibial and talar regions.
Objective. To determine, for clinical indentation testing of human articular cartilage, the effects of aging and degeneration on indentation stiffness and traditional indices of cartilage degeneration; the relationship between indentation stiffness and indices of degeneration; and the sensitivity and specificity of indentation stiffness to cartilage degeneration.Methods. Results. Indentation stiffness, India ink staining, and the histopathology score each varied markedly between normal-sample and degenerate-sample groups but varied relatively little between normal samples obtained from different age groups. A decrease in indentation stiffness (softening) correlated with a decrease in the reflectance score and an increase in the overall histopathology score, especially the surface irregularity component of the histopathology score. Receiver operating characteristic analysis suggested that the indentation testing could accurately detect cartilage degeneration as indicated by macroscopic appearance, India ink staining, and histopathology score.Conclusion. The indentation stiffness of the normal to mildly degenerate samples tested in this study was sensitive to mild degeneration at the articular surface and was insensitive to changes associated with normal aging or to slight variations in cartilage thickness. This suggests that indentation testing may be a useful clinical tool for the evaluation of early-stage degenerative changes in articular cartilage.Short-duration indentation testing is being considered as a diagnostic tool for assessing the biomechanical properties of human cartilage (1-6). In the laboratory setting, indentation tests of long duration have been performed routinely on human or animal tissue as an end point (post mortem) method of evaluation (7-13). In the clinical setting, however, such traditional laboratory tests are not practical because of the long duration of the test and the large size of the test apparatus. Short-duration indentation testing, performed using an arthroscopic probe, may be useful and appropriate in the clinical setting.A short-duration indentation test of articular cartilage in adult humans may be affected by both degenerative changes and normal age-associated changes in the cartilage. Although several biomechanics studies have analyzed human articular cartilage using a rapid indentation test (2,(4)(5)(6)12,(14)(15)(16)(17), and others have examined the relationships between short-duration indentation stiffness and traditional measures of cartilage degeneration (5,14,17,18), the effects of normal aging and mild cartilage degeneration remain to be established. The establishment of baseline indentation measurements for articular cartilage in the setting of normal aging would be useful to help interpret an indentation test result in the clinical setting. Determination of the
Porous 75:25 poly(D,L-lactide-co-glycolide) scaffolds reinforced with polyglycolide fibers were prepared with mechanical properties tailored for use in articular cartilage repair. Compression testing was performed to investigate the influence of physiological testing conditions, manufacturing method, anisotropic properties due to predominant fiber orientation, amounts of fiber reinforcement (0 to 20 wt, %), and viscoelasticity via a range of strain rates. Using the same testing modality, the mechanical properties of the scaffolds were compared with pig and goat articular cartilage. Results showed that mechanical properties of the scaffolds under physiological conditions (aqueous, 37 degrees C) were much lower than when tested under ambient conditions. The manufacturing method and anisotropy of the scaffolds significantly influenced the mechanical properties. The compressive modulus and yield strength proportionally increased with increasing fiber reinforcement up to 20%. From 0.01 to 10 mm/mm/min strain rate, the compressive modulus increased in a logarithmic fashion, and the yield strength increased in a semi-log fashion. The compressive modulus of the non-reinforced scaffolds was most similar to the pig and goat articular cartilage when compared using similar testing conditions and modality, but the improvement in yield strength using the stiffer scaffolds with fiber reinforcement could provide needed structural support for in vivo loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.