A recently developed coupled third-order zigzag theory for the statics of piezoelectric hybrid crossply plates is extended to dynamics. The theory combines a third-order zigzag approximation for the in-plane displacements and a sub-layerwise linear approximation for the electric potential, considering all components of the electric field. The nonuniform variation of the transverse displacement due to the piezoelectric field is accounted for. The conditions for the absence of shear traction at the top and bottom surfaces and continuity of transverse shear stresses in the presence of electromechanical loading are satisfied exactly, thereby reducing the number of displacement variables to five, which is the same as in a first-or third-order equivalent single-layer theory. The governing equations of motion are derived from the extended Hamilton's principle. The theory is assessed by comparing the Navier solutions for the free and forced harmonic vibration response of simply supported plates with the exact three-dimensional piezoelasticity solutions. Comparisons for hybrid test, composite and sandwich plates establish that the present theory is quite accurate for the dynamic response of moderately thick plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.