A recently developed coupled third-order zigzag theory for the statics of piezoelectric hybrid crossply plates is extended to dynamics. The theory combines a third-order zigzag approximation for the in-plane displacements and a sub-layerwise linear approximation for the electric potential, considering all components of the electric field. The nonuniform variation of the transverse displacement due to the piezoelectric field is accounted for. The conditions for the absence of shear traction at the top and bottom surfaces and continuity of transverse shear stresses in the presence of electromechanical loading are satisfied exactly, thereby reducing the number of displacement variables to five, which is the same as in a first-or third-order equivalent single-layer theory. The governing equations of motion are derived from the extended Hamilton's principle. The theory is assessed by comparing the Navier solutions for the free and forced harmonic vibration response of simply supported plates with the exact three-dimensional piezoelasticity solutions. Comparisons for hybrid test, composite and sandwich plates establish that the present theory is quite accurate for the dynamic response of moderately thick plates.