Measurements of charged pion and kaon production in central PbϩPb collisions at 40, 80, and 158 A GeV are presented. These are compared with data at lower and higher energies as well as with results from pϩp interactions. The mean pion multiplicity per wounded nucleon increases approximately linearly with s NN 1/4 with a change of slope starting in the region 15-40 A GeV. The change from pion suppression with respect to p ϩp interactions, as observed at low collision energies, to pion enhancement at high energies occurs at about 40A GeV. A nonmonotonic energy dependence of the ratio of K ϩ to ϩ yields is observed, with a maximum close to 40A GeV and an indication of a nearly constant value at higher energies. The measured dependences may be related to an increase of the entropy production and a decrease of the strangeness to entropy ratio in central PbϩPb collisions in the low SPS energy range, which is consistent with the hypothesis that a transient state of deconfined matter is created above these energies. Other interpretations of the data are also discussed.
Optic disc pits are a very rare clinical entity, affecting approximately one in 11,000 people. Patients with congenital optic disc pit sometimes remain asymptomatic, but 25% to 75% present with visual deterioration in their 30s or 40s after developing macular schisis and detachment. The most widely accepted treatment for such patients is a surgical approach involving pars plana vitrectomy with or without internal limiting membrane peeling, with or without endolaser photocoagulation and C3F8 endotamponade.
The production of charged pions in minimum bias p+C interactions is studied using a sample of 377 000 inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. The data cover a phase space area ranging from 0 to 1.8 GeV/c in transverse momentum and from -0.1 to 0.5 in Feynman x. Inclusive invariant cross sections are given on a grid of 270 bins per charge thus offering for the first time a dense coverage of the projectile hemisphere and of the cross-over region into the target fragmentation zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.