Silicon nanowhiskers in the diameter range of 70 to 200 nm were grown on 〈111〉-oriented silicon substrates by molecular-beam epitaxy. Assuming the so-called “vapor–liquid–solid” (VLS) growth process to operate, we initiated the growth by using small clusters of gold at the silicon interface as seeds. The in situ generation of the Au clusters as well as the growth parameters of the whiskers are discussed. The experimentally observed radius dependence of the growth velocity of the nanowhiskers is opposite to what is known for VLS growth based on chemical vapor deposition and can be explained by an ad-atom diffusion on the surface of the whiskers.
Silicon nanowires can be successfully grown by applying the vapor -liquid -solid process. In the case of the commonly used chemical vapor deposition technique, a Si containing gas/precursor is cracked at Au droplets acting as seeds. Si adatoms are subsequently dissolved in the liquid metal. Due to a supersaturation within this droplet, Si precipitates predominantly at the liquid -solid interface -a nanowire grows. A different situation occurs if nanowires are grown by molecular beam epitaxy via the vaporliquid -solid mechanism. The difference consists, for example, of the role of the metal seed, the morphology of the nanowires and their aspect ratio. In particular, surface diffusion including the metal used as well as Si, strongly influences the growth process. This article describes molecular beam epitaxy growth experiments of Si nanowires under ultra-high vacuum conditions and compares the results with other growth techniques.
Silicon nanowires can be successfully grown by applying the vapor – liquid – solid process. In the case of the commonly used chemical vapor deposition technique, a Si containing gas/precursor is cracked at Au droplets acting as seeds. Si adatoms are subsequently dissolved in the liquid metal. Due to a supersaturation within this droplet, Si precipitates predominantly at the liquid – solid interface – a nanowire grows. A different situation occurs if nanowires are grown by molecular beam epitaxy via the vapor– liquid – solid mechanism. The difference consists, for example, of the role of the metal seed, the morphology of the nanowires and their aspect ratio. In particular, surface diffusion including the metal used as well as Si, strongly influences the growth process. This article describes molecular beam epitaxy growth experiments of Si nanowires under ultra-high vacuum conditions and compares the results with other growth techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.