Rootstocks are among the main factors that influence grape development as well as fruit and wine composition. In this work, rootstock/scion interactions were studied using transcriptomic and metabolic approaches on leaves of the “Gaglioppo” variety, grafted onto 13 different rootstocks growing in the same vineyard. The whole leaf transcriptome of “Gaglioppo” grafted onto five selected rootstocks showed high variability in gene expression. In particular, significant modulation of transcripts linked to primary and secondary metabolism was observed. Interestingly, genes and metabolites involved in defense responses (e.g., stilbenes and defense genes) were strongly activated particularly in the GAG-41B combination, characterized in addition by the down-regulation of abscisic acid (ABA) metabolism. On the contrary, the leaves of “Gaglioppo” grafted onto 1103 Paulsen showed an opposite regulations of those transcripts and metabolites, together with the greater sensitivity to downy mildew in a preliminary in vitro assay. This study carried out an extensive transcriptomic analysis of rootstock effects on scion leaves, helping to unravel this complex interaction, and suggesting an interesting correlation among constitutive stilbenes, ABA compound, and disease susceptibility to a fungal pathogen.
In the present article we have ascertained the presence of a consortium of ectosymbiotic bacteria belonging to Serratia, Achromobacter, Bacillus and Stenotrophomonas genera associated to the mycelium of the antagonistic Fusarium oxysporum MSA 35 [wild-type (WT) strain]. Morphological characterization carried out on the WT strain, on the F. oxysporum MSA 35 without ectosymbionts [cured (CU) strain] and on the pathogenic F. oxysporum f.sp. lactucae (Fuslat 10) showed that the ectosymbionts, present only in the WT strain, caused a depleted production of micro conidia and aerial hyphae, and a change in shape and dimension of the latter. Virulence tests showed that the cured Fusarium was a pathogenic strain and, as shown by polymerase chain reaction and microscope analysis, pathogenicity was correlated with the capability of the cured hyphae of penetrating lettuce roots. Accordingly, the hyphae of the WT strain were impaired in entering the plant roots. Typing experiments provided evidence that both CU and WT strains belong to F. oxysporum f.sp. lactucae. This implies that the antagonistic effect of WT Fusarium is not a fungal trait, but it is due to the interaction with the ectosymbiotic bacteria. Expression analysis showed that fmk1, chsV and pl1 genes involved in F. oxysporum pathogenicity are not expressed in the WT strain whereas they are expressed in the cured fungus. These results, together with the hyphal characteristics, suggest that the inability of WT strain to penetrate the plant roots could be due to alterations in the expression profile of cell wall-degrading enzymes. In conclusion, we demonstrated a modulation of F. oxysporum gene expression in response to the interaction with the ectosymbiotic bacteria. Preliminary researches indicated that the presence of bacteria attached to the hyphae of antagonistic F. oxysporum is not an isolated phenomenon. Further investigations are necessary to better understand the rule and the diffusion of ectosymbiotic bacteria among antagonistic Fusarium.
Fusarium oxysporum f. sp. lactucae, the causal agent of fusarium wilt of lettuce (Lactuca sativa), occurs in most countries in which lettuce is grown and causes serious economic losses. Three races (1, 2 and 3) of the pathogen have previously been identified on the basis of their ability to cause disease on differential lettuce cultivars, as well as by means of molecular tools developed to characterize different races of this pathogen. Only race 1 has been detected in Europe so far. In this study, two isolates of F. oxysporum, obtained from lettuce plants grown in the Netherlands showing symptoms of wilt, have been characterized by combining the study of pathogenicity with differential cultivars of lettuce and molecular assays to determine whether the isolates are different from the known races of F. oxysporum f. sp. lactucae. This study reports the presence of F. oxysporum f. sp. lactucae for the first time in the Netherlands. The causal pathogen has been identified, using the IRAP‐SCAR technique, as a new race of F. oxysporum f. sp. lactucae. Specific primers have been designed to identify this new race.
The ready-to-eat salad sector, also called fresh-cut or bagged salads, is a fast-growing segment of the fresh-food industry. The dynamism and specialization of this sector, together with the lack of adequate crop rotation, the globalization of the seed market, and climate change, are the main causes of the development of many new diseases that cause severe production losses. Newly detected diseases of the most important crops grown (lettuce, wild and cultivated rocket, lamb’s lettuce, chicory, endive, basil, spinach, and Swiss chard) are critically discussed. The management of these diseases represents a formidable challenge, since few fungicides are registered on these minor-use crops. An interesting feature of the ready-to-eat salad sector is that most crops are grown under protection, often in soilless systems, which provide an environment helpful to the implementation of innovative control methods. Current trends in disease management are discussed, with special focus on the most sustainable practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.