Fusarium oxysporum f. sp. lactucae, the causal agent of fusarium wilt of lettuce (Lactuca sativa), occurs in most countries in which lettuce is grown and causes serious economic losses. Three races (1, 2 and 3) of the pathogen have previously been identified on the basis of their ability to cause disease on differential lettuce cultivars, as well as by means of molecular tools developed to characterize different races of this pathogen. Only race 1 has been detected in Europe so far. In this study, two isolates of F. oxysporum, obtained from lettuce plants grown in the Netherlands showing symptoms of wilt, have been characterized by combining the study of pathogenicity with differential cultivars of lettuce and molecular assays to determine whether the isolates are different from the known races of F. oxysporum f. sp. lactucae. This study reports the presence of F. oxysporum f. sp. lactucae for the first time in the Netherlands. The causal pathogen has been identified, using the IRAP‐SCAR technique, as a new race of F. oxysporum f. sp. lactucae. Specific primers have been designed to identify this new race.
Non-target site resistance (NTSR) to herbicides in black-grass (Alopecurus myosuroides) results in enhanced tolerance to multiple chemistries and is widespread in Northern Europe. To help define the underpinning mechanisms of resistance, global transcriptome and biochemical analysis have been used to phenotype three NTSR black-grass populations. These comprised NTSR1 black-grass from the classic Peldon field population, which shows broad-ranging resistance to post-emergence herbicides; NTSR2 derived from herbicide-sensitive (HS) plants repeatedly selected for tolerance to pendimethalin; and NTSR3 selected from HS plants for resistance to fenoxaprop-P-ethyl. NTSR in weeds is commonly associated with enhanced herbicide metabolism catalyzed by glutathione transferases (GSTs) and cytochromes P450 (CYPs). As such, the NTSR populations were assessed for their ability to detoxify chlorotoluron, which is detoxified by CYPs and fenoxaprop-P-ethyl, which is acted on by GSTs. As compared with HS plants, enhanced metabolism toward both herbicides was determined in the NTSR1 and NTSR2 populations. In contrast, the NTSR3 plants showed no increased detoxification capacity, demonstrating that resistance in this population was not due to enhanced metabolism. All resistant populations showed increased levels of AmGSTF1, a protein functionally linked to NTSR and enhanced herbicide metabolism. Enhanced AmGSTF1 was associated with increased levels of the associated transcripts in the NTSR1 and NTSR2 plants, but not in NTSR3, suggestive of both pre- and post-transcriptional regulation. The related HS, NTSR2, and NTSR3 plants were subject to global transcriptome sequencing and weighted gene co-expression network analysis to identify modules of genes with coupled regulatory functions. In the NTSR2 plants, modules linked to detoxification were identified, with many similarities to the transcriptome of NTSR1 black-grass. Critical detoxification genes included members of the CYP81A family and tau and phi class GSTs. The NTSR2 transcriptome also showed network similarities to other (a)biotic stresses of plants and multidrug resistance in humans. In contrast, completely different gene networks were activated in the NTSR3 plants, showing similarity to the responses to cold, osmotic shock and fungal infection determined in cereals. Our results demonstrate that NTSR in black-grass can arise from at least two distinct mechanisms, each involving complex changes in gene regulatory networks.
Monilinia laxa and M. fructicola are two causal agents of brown rot, one of the most important diseases in stone fruit. Two species cause blight on blossoms and twigs and brown rot on fruit in pre- and postharvest. Both species are distributed worldwide in North and South America, Australia, and Japan. In Europe, M. laxa is endemic, while M. fructicola was introduced in 2001 and it is now widespread in several countries. Currently, both species coexist in European stone fruit orchards. Monilinia spp. overwinter in cankers and mummified fruit. Mummy monitoring during winter permits growers to understand which species of Monilinia will be prevalent in an orchard during the following season, permitting planning of an appropriate crop protection. Traditionally, the identification has been carried out using morphological features and even with polymerase chain reaction (PCR)-based assays that requires time and well-equipped laboratories. In this study, two isothermal-based methods were designed to identify these pathogens in a faster way than using traditional methods. The loop-mediated amplification (LAMP) assays were validated on some isolates of Monilinia spp. coming from the mummy monitoring according to the international European and Mediterranean Plant Protection Organization standard (PM7/98), taking into account specificity, sensitivity, repeatability, and reproducibility. The sensitivity of both assays was checked by monitoring (at different time points) two nectarine varieties artificially inoculated and stored at two different temperatures. The reliability of both LAMP assays against the quantification of the inoculum was compared with previously published quantitative PCR assays. Both LAMP methods were able to detect a low number of cells. These LAMP methods could be a useful tool for monitoring brown rot causal agents in the field and during postharvest.
Bakanae disease (caused by Fusarium fujikuroi) and rice blast (caused by Magnaporthe oryzae) are two of the most important seedborne pathogens of rice. The detection of both pathogens in rice seed is necessary to maintain high quality standards and avoid production losses. Currently, blotter tests are used followed by morphological identification of the developing pathogens to provide an incidence of infection in seed lots. Two loop-mediated isothermal amplification assays were developed with primers designed to target the elongation factor 1-α sequence of F. fujikuroi and the calmodulin sequence of M. oryzae. The specificity, sensitivity, selectivity, repeatability, and reproducibility for each assay was assessed in line with the international validation standard published by the European and Mediterranean Plant Protection Organization (PM7/98). The results showed a limit of detection of 100 to 999 fg of DNA of F. fujikuroi and 10 to 99 pg of M. oryzae DNA. When combined with a commercial DNA extraction kit, the assays were demonstrated to be effective for use in detection of the pathogens in commercial batches of infected rice seed of different cultivars, giving results equivalent to the blotter method, thus demonstrating the reliability of the method for the surveillance of F. fujikuroi and M. oryzae in seed-testing laboratories.
Safeners such as metcamifen and benoxacor are widely used in maize to enhance the selectivity of herbicides through the induction of key detoxifying enzymes, notably cytochrome P450 monooxygenases (CYPs). Using a combination of transcriptomics, proteomics, and functional assays, the safener-inducible CYPs responsible for herbicide metabolism in this globally important crop have been identified. A total of 18 CYPs belonging to clans 71, 72, 74, and 86 were safener-induced, with the respective enzymes expressed in yeast and screened for activity toward thiadiazine (bentazon), sulfonylurea (nicosulfuron), and triketone (mesotrione and tembotrione) chemistries. Herbicide metabolism was largely restricted to family CYP81A members from clan 71, notably CYP81A9, CYP81A16, and CYP81A2. Quantitative transcriptomics and proteomics showed that CYP81A9/CYP81A16 were dominant enzymes in safener-treated field maize, whereas only CYP81A9 was determined in sweet corn. The relationship between CYP81A sequence and activities were investigated by splicing CYP81A2 and CP81A9 together as a series of recombinant chimeras. CYP81A9 showed wide ranging activities toward the three herbicide chemistries, while CYP81A2 uniquely hydroxylated bentazon in multiple positions. The plasticity in substrate specificity of CYP81A9 toward multiple herbicides resided in the second quartile of its N terminal half. Further phylogenetic analysis of CYP81A9 showed that the maize enzyme was related to other CYP81As linked to agrochemical metabolism in cereals and wild grasses, suggesting this clan 71 CYP has a unique function in determining herbicide selectivity in arable crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.