Spatial and temporal variation in fish-assemblage structure within isolated waterholes on the floodplains of Cooper Creek, Australia, was studied during the 2001 dry season, a period of natural drought in this arid-zone river. Spatial variation in fish-assemblage structure and the abundance of five species in disconnected waterholes early in the dry season (April 2001) were related to the extent of floodplain inundation 14 months previously, and to the interconnectedness of waterholes and waterhole habitat structure. As the dry season progressed, waterhole volumes decreased owing to evaporative water loss and structural habitat elements (anabranches, bars, boulders) became exposed. Marked changes in fish assemblage structure between the early (April) and late (September) dry season were related to habitat loss but not to water chemistry. Interactions between flow and habitat across a nested hierarchy of spatial scales (the floodplain, the waterhole and habitat patches within waterholes) were crucial to the persistence of fish assemblages through the 2001 dry season. We conclude that the magnitude, timing and frequency of floodplain inundation and natural variations in waterhole volume must be maintained if we wish to sustain the distinctive habitats and fish assemblages of this arid-zone floodplain river.
Fish in dryland rivers must cope with extreme variability in hydrology, temperature and other environmental factors that ultimately have a major influence on their patterns of distribution and abundance at the landscape scale. Given that fish persist in these systems under conditions of high environmental variability, dryland rivers represent ideal systems to investigate the processes contributing to and sustaining fish biodiversity and recruitment in variable environments. Hence, spatial and temporal variation in fish assemblage structure was examined in 15 waterholes of the Warrego River between October 2001 and May 2003. Fish assemblages in isolated waterholes were differentiated at the end of the dry 2001 winter but were relatively similar following high summer flows in January 2002 as a consequence of high hydrological connectivity among waterholes. Small, shallow waterholes supported more species and higher abundances than large-deep waterholes. Large, deep waterholes provided important refuge for large-bodied fish species such as adult yellowbelly, Macquaria ambigua, and the eel-tailed catfish, Tandanus tandanus. Recruitment patterns of bony bream (Nematalosa erebi), Hyrtl’s tandan (Neosilurus hyrtlii) and yellowbelly were associated with high flow events and backwater inundation; however recruitment of yellowbelly and bony bream was also evident following a zero-flow period. Departures from typical flood-induced seasonal spawning patterns may reflect opportunistic spawning behaviours appropriate to the erratic patterns of flooding and dry spells in dryland rivers.
BackgroundIrrigation schemes have been blamed for the increase in malaria in many parts of sub-Saharan Africa. However, proper water management could help mitigate malaria around irrigation schemes in this region. This study investigates the link between irrigation and malaria in Central Ethiopia.MethodsLarval and adult mosquitoes were collected fortnightly between November 2009 and October 2010 from two irrigated and two non-irrigated (control) villages in the Ziway area, Central Ethiopia. Daily canal water releases were recorded during the study period and bi-weekly correlation analysis was done to determine relationships between canal water releases and larval/adult vector densities. Blood meal sources (bovine vs human) and malaria sporozoite infection were tested using enzyme-linked immunosorbent assay (ELISA). Monthly malaria data were also collected from central health centre of the study villages.ResultsMonthly malaria incidence was over six-fold higher in the irrigated villages than the non-irrigated villages. The number of anopheline breeding habitats was 3.6 times higher in the irrigated villages than the non-irrigated villages and the most common Anopheles mosquito breeding habitats were waterlogged field puddles, leakage pools from irrigation canals and poorly functioning irrigation canals. Larval and adult anopheline densities were seven- and nine-fold higher in the irrigated villages than in the non-irrigated villages, respectively, during the study period. Anopheles arabiensis was the predominant species in the study area. Plasmodium falciparum sporozoite rates of An. arabiensis and Anopheles pharoensis were significantly higher in the irrigated villages than the non-irrigated villages. The annual entomological inoculation rate (EIR) calculated for the irrigated and non-irrigated villages were 34.8 and 0.25 P. falciparum infective bites per person per year, respectively. A strong positive correlation was found between bi-weekly anopheline larval density and canal water releases. Similarly, there was a strong positive correlation between bi-weekly vector density and canal water releases lagged by two weeks. Furthermore, monthly malaria incidence was strongly correlated with monthly vector density lagged by a month in the irrigated villages.ConclusionThe present study revealed that the irrigation schemes resulted in intensified malaria transmission due to poor canal water management. Proper canal water management could reduce vector abundance and malaria transmission in the irrigated villages.
Summary Alteration of flow and thermal regimes is a key consequence of human use of river and floodplain ecosystems, and these impacts result from a range of interacting ecological mechanisms. Environmental flow regimes are a management strategy to restore or maintain ecologically important aspects of river hydrology. However, inadequate understanding of the processes that determine the effects of flow on population dynamics of biota hinders the maximum benefits of environmental flows. Spawning and recruitment of riverine fish is mediated by temperature, access to nursery habitat and the timing and availability of resources. Differences in population sizes between regulated and unregulated rivers are often attributed to the effect of flow and thermal regime change on population dynamics. Dams and extraction of water have altered the flow and thermal regimes of rivers in the northern Murray–Darling Basin, Australia. Combining three studies, we (i) examined differences in the recruitment of fish and patterns of potential prey availability between a regulated and unregulated river, (ii) studied the relationships between patterns of flow and temperature on spawning of fish in two rivers with contrasting regulated flow regimes and (iii) experimentally tested the effects of environmental flow releases in a regulated river on fish spawning and recruitment by comparing patterns over time against two unregulated rivers. Comparisons between regulated and unregulated rivers indicated that the significantly lower recruitment of Macquaria ambigua in the regulated river was linked with large differences in available prey. Species‐specific differences in the abundance of fish larvae between two regulated rivers indicated that different reproductive strategies determine population‐level responses to flow regulation. Finally, the experimental flow releases in a regulated reach during late spring did not result in a change in spawning and recruitment of fish, although influences of antecedent flow and temperature on larval and juvenile assemblage composition were significant. These findings indicate that the responses of fish spawning and recruitment to flow regime change and restoration are dependent on the conditions that determine the success of these critical life‐history processes. Specifically, key effects of flow regulation are reduced summer water temperatures due to hypolimnetic discharge from dams, and the reduced frequency and duration of low flows. Reduced water temperatures limit opportunities for fish to spawn, and sustained base flows were associated with lower densities of potential prey sources in conjunction with potential flushing of larvae and juveniles, thereby influencing recruitment. The benefits of environmental flow programmes can be enhanced if flow regimes are modified to ensure that abiotic and biotic conditions that support persistence of biota are provided. In conjunction with flow pulses and floods, low flows are a natural and ecologically important component of flow regimes, particularly in drylan...
BackgroundDams are important to ensure food security and promote economic development in sub-Saharan Africa. However, a poor understanding of the negative public health consequences from issues such as malaria could affect their intended advantages. This study aims to compare the malaria situation across elevation and proximity to dams. Such information may contribute to better understand how dams affect malaria in different eco-epidemiological settings.MethodsLarval and adult mosquitoes were collected from dam and non-dam villages around the Kesem (lowland), Koka (midland), and Koga (highland) dams in Ethiopia between October 2013 and July 2014. Determination of blood meal sources and detection of Plasmodium falciparum sporozoites was done using enzyme-linked immunosorbent assay (ELISA). Five years of monthly malaria case data (2010–2014) were also collected from health centers in the study villages.ResultsMean monthly malaria incidence was two- and ten-fold higher in the lowland dam village than in midland and highland dam villages, respectively. The total surface area of anopheline breeding habitats and the mean larval density was significantly higher in the lowland dam village compared with the midland and highland dam villages. Similarly, the mean monthly malaria incidence and anopheline larval density was generally higher in the dam villages than in the non-dam villages in all the three dam settings. Anopheles arabiensis, Anopheles pharoensis, and Anopheles funestus s.l. were the most common species, largely collected from lowland and midland dam villages. Larvae of these species were mainly found in reservoir shoreline puddles and irrigation canals. The mean adult anopheline density was significantly higher in the lowland dam village than in the midland and highland dam villages. The annual entomological inoculation rate (EIR) of An. arabiensis, An. funestus s.l., and An. pharoensis in the lowland dam village was 129.8, 47.8, and 33.3 infective bites per person per annum, respectively. The annual EIR of An. arabiensis and An. pharoensis was 6.3 and 3.2 times higher in the lowland dam village than in the midland dam village.ConclusionsThis study found that the presence of dams intensifies malaria transmission in lowland and midland ecological settings. Dam and irrigation management practices that could reduce vector abundance and malaria transmission need to be developed for these regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.